
Demand-Driven Context-Sensitive Alias Analysis for Java

Dacong Yan Guoqing Xu Atanas Rountev
Ohio State University

{yan,xug,rountev}@cse.ohio-state.edu

ABSTRACT

Software tools for program understanding, transformation,
verification, and testing often require an efficient yet highly-
precise alias analysis. Typically this is done by comput-
ing points-to information, from which alias queries can be
answered. This paper presents a novel context-sensitive,
demand-driven alias analysis for Java that achieves efficiency
by answering alias queries directly, instead of relying on an
underlying points-to analysis. The analysis is formulated as
a context-free-language (CFL) reachability problem over a
language that models calling context sensitivity, and over
another language that models field sensitivity (i.e., flow of
reference values through fields of heap objects).

To improve analysis scalability, we propose to compute
procedural reachability summaries online, during the CFL-
reachability computation. This cannot be done indiscrim-
inately, as the benefits of using the summary information
do not necessarily outweigh the cost of computing it. Our
approach selects for summarization only a subset of heavily-
used methods (i.e., methods having a large number of in-
coming edges in the static call graph). We have performed
a variety of studies on the proposed analysis. The experi-
mental results show that, within the same time budget, the
precision of the analysis is higher than that of a state-of-the-
art highly-precise points-to analysis. In addition, the use of
method summaries can lead to significant improvements in
analysis performance.

Categories and Subject Descriptors

F.3.2 [Logics and Meaning of Programs]: Semantics of
Programming Languages—Program analysis

General Terms

Algorithms, measurement, experimentation

Keywords

Alias analysis, context sensitivity, demand-driven

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17-21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/07 ...$10.00.

1. INTRODUCTION
Alias analysis is an essential component of virtually any

tool for static analysis and transformation. It is especially
important for analyzing modern object-oriented software sys-
tems, where pointers are used extensively to access heap ob-
jects. A may-alias analysis conservatively approximates, for
two variables, whether they could point to the same object
at run time. It is well-known that both the quality of such
information and the cost of computing it can have significant
influence on the effectiveness of software tools that make use
of it. Demand-driven alias analyses have recently been the
subject of several studies [3, 2, 27, 26, 33]. They are based
on the observation that for most software tools, instead of
requiring a whole-program points-to/alias solution, the tools
are interested only in a small portion of variables and objects
that are critical to the tasks being performed. A demand-
driven analysis allows a client to perform queries, which can
be answered efficiently, on demand, rather than computing
a whole-program solution.

A typical way to answer queries regarding whether two
variables are aliases is to query an underlying (demand-
driven) points-to analysis, and then check whether their
points-to sets have a non-empty intersection. Among the
many points-to analyses for Java proposed in the literature,
the analysis via context-free-language (CFL) reachability by
Sridharan and Bodik [26] (SB analysis in the rest of the pa-
per) is the most precise demand-driven one. However, it
does not scale well when highly-precise results for a large
number of queries are needed. Recently, a CFL-reachability-
based demand-driven alias analysis [33] was proposed for the
C language. This analysis is based on the insight that query-
ing the aliasing relationship between two variables does not
have to be performed by first computing points-to sets for
them. Such a query can be answered much more efficiently
by finding CFL-reachability paths on a graph based on a
new context-free language.

While this formulation sheds new lights on the alias anal-
ysis implementation, it is not easy to adapt to Java. First,
their context-free language considers only C-style pointers,
where pointer dereferences can occur only through the deref-
erence (*) operator. However, in Java, pointer dereferences
can involve different fields, and a Java field-sensitive anal-
ysis has to match explicitly the fields associated with dif-
ferent pointer dereferences (i.e., at loads and stores of fields
of heap objects). Second, this analysis is context-insensitive
and does not distinguish calling contexts when determining
aliasing relationships. This limits significantly its usefulness
if it is ported directly to Java, as a Java program can make

use of a large number of object-oriented data structures, and
failing to distinguish calling contexts can lead to unusable
solutions due to imprecision. As pointed out by numerous
researchers (e.g., [4, 24, 13, 10]), context-sensitivity is one
of the most important factors to be considered when design-
ing a points-to/alias analysis for object-oriented programs.
It remains a challenge to design a highly-precise demand-
driven yet efficient alias analysis for Java, despite the high
demand for such an analysis from modern software tools
dealing with increasingly large and complex applications.

We propose a context-sensitive, demand-driven may alias
analysis for Java, which does not require a points-to anal-
ysis to answer alias queries. The precision of the analy-
sis is comparable to the state-of-the-art SB analysis [26]
(a highly-precise demand-driven points-to analysis), as it
context-sensitively models both pointer variables and pointer
targets (i.e., heap objects). Yet, it can answer alias queries
much faster than the traditional approach that uses points-
to analysis. In fact, if they are run within the same time
budget, our analysis often produces higher-quality solutions.
We formulate the analysis as a single-source, single-target
CFL-reachability problem. Similarly to the SB analysis, our
analysis considers two dimensions: field accesses are checked
to achieve field sensitivity, and method entries and exits
are checked to achieve context sensitivity. Field sensitivity
checks are based on a new context-free language memAlias,
which is designed specifically for Java. This language has a
much simpler structure than the language used in the CFL-
reachability formulation from the SB analysis; as a result,
we obtain a more efficient algorithm.

While our field-sensitivity check is more efficient than the
one from the SB analysis, our analysis could still experi-
ence“context blowup”. One typical approach for solving this
problem is to introduce approximations, trading off precision
for analysis running time (e.g., with approximation graph
edges, as done in the SB analysis). Instead, our analysis at-
tempts to solve the problem by computing procedural reach-
ability summaries for methods that are invoked from many
call sites. Summaries are computed online, during the anal-
ysis, and applied when CFL-reachability paths are about
to enter these methods. This leads to significant reduction
on the effort to re-traverse their bodies many times (poten-
tially under different calling contexts). While trade-offs may
still be employed later (e.g., when the client-defined budget
for a query runs out), using such summaries can effectively
avoid wasting the time budget on repeated work and thus
postpone the out-of-budget timeout, leading to significant
precision improvements.

The ability to compute and use reachability summaries is
due to the special structure of the proposed memAlias lan-
guage; it would be much more difficult to compute similar
summaries for the SB analysis. Even though the memAlias
(field-sensitivity) formulation is not as precise, it enables
summary generation and yields an efficient algorithm. As a
result, our analysis is able to traverse more contexts within
the same budget. This results in a certain level of precision
recovery, leading to even more precise solutions in many
cases. The key novel observation is that certain loss of pre-
cision along the axis of field sensitivity can be successfully
compensated by the increased precision along the axis of
context sensitivity.

We have implemented the analysis on the Soot analysis
framework [28] and performed a variety of studies on it.

The results show that, given the same time budget for an
alias query, the precision of our alias analysis in general is
higher than that of the SB analysis, and in some cases signif-
icantly more precise aliasing relationships are reported. We
have also investigated empirically the trade-offs for differ-
ent choices of criteria for computing reachability summaries
for methods, and observed the significant analysis improve-
ments they could yield.

2. BACKGROUND
This section outlines the CFL-reachability formulation for

a context-sensitive points-to analysis proposed in [26] by
Sridharan and Bodik. A running example is also provided
to illustrate the key ideas of our alias analysis.

CFL-reachability formulation of points-to analysis.
In a directed graph G with labeled edges, a relation R over
graph nodes can be formulated as a CFL-reachability prob-
lem by defining a context-free grammar and considering the
corresponding language L. A pair (n, n�) ∈ R if and only if
there exists a path from n to n� such that the sequence of
edge labels belongs to L; such a path is an L-path. Node
n� is L-reachable from n (denoted by n L n�), if there ex-
ists an L-path from n to n�. For any non-terminal S in the
grammar, S-paths can be defined similarly.

This formulation has been used by existing points-to anal-
yses for Java [26, 27] to model field sensitivity via object
field reads/writes, and context sensitivity via method en-
tries/exits. In this approach, a demand-driven points-to
analysis determines all nodes n� such that n L n� for a given
node n, where language L is defined as LF ∩ LC. Language
LF, where F stands for “flows-to”, encodes the flow of ref-
erence values through object fields. Language LC, where C

stands for “calling-context”, ensures a degree of calling con-
text sensitivity.

Flow graph. To perform an analysis using the above
formulation, a Java program is represented as a flow graph.
In this graph G, if a run-time heap object represented by
the abstract location o can flow to a variable v, there exists
an LF-path from o to v. There are four types of edges in
the graph, created by considering the following categories of

statements: an edge o
new
−−→ x for an allocation x = new O; an

edge y
assign
−−−→ x for an assignment x = y; edges y

store(f)
−−−−→ x and

y
load(f)
−−−−→ x for a field write x.f = y and a field read x = y.f ,

respectively. Parameter passing is treated as assignments
from actuals to formals; return values are handled similarly.
Accesses to arrays are represented by collapsing all array
elements into one artificial field arr elm.

Language LF. If the flow graph G contains only new

and assign edges, language LF is regular and its grammar
is simply flowsTo → new (assign)∗, showing the transitive
flow due to assign edges. Clearly, o flowsTo v in G means
that o belongs to the points-to set of v.

In the presence of field accesses, inverse edges are intro-
duced to allow a CFL-reachability formulation. For each

edge x
t
−→ y, an edge y

t̄
−→ x is introduced. For any path p,

the inverse path p̄ is defined by reversing the order of edges
in p and replacing each edge with its inverse. Thus, if there
exists a flowsTo-path from abstract object o to variable v,
there also exists a flowsTo-path from v to o.

By definition, two variables a and b may alias if there
exists an object o such that o can flow to both a and b. With
inverse edges and inverse paths, the may-alias relation can be

1 class Vector {
2 Object[] data;
3 int cntr;

4 Vector() { t = new Object[MAX];
5 this.data = t; }

6 void add(Object e) {
7 t = this.data;

8 t[cntr++] = e;
9 }
10 Object get(int idx) {

11 t = this.data;
12 p = t[idx]; return p;

13 }
14 }

15 class Element { Object f; }
16 static void main(String[] args) {
17 Vector v = new Vector();

18 Element a = new Element();
19 t = "hello"; a.f = t; v.add(a);

20 Vector w = new Vector();
21 Element b = new Element();

22 w.add(b);
23 Element c = (Element)w.get(0);
24 t = "world"; c.f = t;

25 Element d = (Element)v.get(0);
26 Object m = d.f;

27 System.out.println(m);
28 }

Figure 1: Running example.

modeled by defining a non-terminal alias such that alias →
flowsTo flowsTo. The field-sensitive points-to relation can
be defined by

flowsTo → new (assign | store(f) alias load(f))∗

This definition checks for balanced pairs of store(f) and load(f)
operations, while also considering the potential aliasing be-
tween the base variables through which the field dereferences
occur.

Language LC. Context sensitivity ensures that method
entries and exits are properly matched. The standard balanced-
parentheses formulation is

C → entry(i) C exit(i) |C C | �

Here entry(i) and exit(i) correspond to the i-th static call
site in the program. This production describes only paths
that start and end in the same method, so it covers only
a subset of the language. The full definition of LC also al-
lows a prefix with unbalanced closed parentheses and a suffix
with unbalanced open parentheses [26]. Context sensitivity
is achieved by considering entries and exits along an LF-path
and ensuring this sequence is in LC. For the purposes of this
context-sensitivity check, an entry edge is treated as an exit

edge and vice versa.
Running example. The code snippets in Figure 1 illus-

trate a simplified implementation of a Vector data structure
and its client code. The corresponding graph representa-
tion for the Sridharan-Bodik CFL-reachability formulation
is shown in Figure 2a.

Each object is represented as oi, where i is the line num-
ber of the code where the object is created. For example,
o19 represents the string literal “hello” at line 19. Simi-
larly, each variable v is represented as vi, where i denotes
the line number of the code where v is declared. A spe-
cial field arr elm is used to represent any array element
of an array. There is a flowsTo-path from o18 to d25, be-
cause (1) there exist two field load/store edge sequences:
o18 new a18 store(arr elm) t7, and t11 load(arr elm) p12 d25;
(2) t7 alias t11 (as o4 can flow to both variables; this part
of the graph is omitted for simplicity); and (3) the load and
store edges in this path are properly balanced. In addi-
tion, this flowsTo-path is context-sensitive, as the sequence
of method entry and exit edges is also balanced (i.e., entry19

entry19entry25exit25).
Note that for part (2) of the path, in order to verify that

t7 and t11 are aliases, the analysis needs to find two sep-
arate flowsTo-paths from the same object o4 to them. In
fact, this relationship can be seen much more easily without
understanding which specific objects they point to: both are

retrieved from the data field of object this in class Vector.
Since there exists a Vector object on which both add and
get are invoked, this7 and this11 can alias, and thus, t7
and t11 are also aliases. Intuitively, we can design a new
grammar that takes advantage of this (partial) knowledge
to answer alias queries, leading to improved quality and ef-
ficiency. This may be especially useful in answering alias
queries regarding variables that are close to each other (e.g.,
declared in the same method) while the objects that they
point to are far away from them (e.g., across many method
invocations).

As another example, a data dependence analysis needs
to query whether or not variable pairs (a, d) and (c, d) are
aliases, in order to construct define-use relationships (in-
volving both stack and heap locations) for method main.
For example, a dependence edge should be added between
statements m = d.f and c.f = t, if c and d can alias. Us-
ing this points-to analysis, answering this query requires the
analysis to traverse the graph twice to find two long flow-
sTo-paths (i.e., from o21 to c23 and from o18 to d25) and then
decide that c and d cannot alias because their points-to sets
do not contain a common object. Using our formulation for
alias analysis, only one graph traversal is needed, based on
the graph shown in Figure 2b.

3. DEMAND-DRIVEN ALIAS ANALYSIS
This section presents our context-sensitive demand-driven

alias analysis. The section starts by discussing a program
representation, symbolic points-to graph, which is used as
the basis for the analysis. A may alias query performed on-
demand is formulated as a single-source single-target CFL-
reachability problem on this graph [18]. A context-insensitive
version of the analysis is then described over a simplified lan-
guage, and is later extended to a fully context-sensitive one
by simultaneously performing CFL-reachability for a lan-
guage that models matched method entries and exits.

3.1 Symbolic Points-to Graph (SPG)
The symbolic points-to graph was first proposed in our

previous work [32] for an exhaustive whole-program alias
analysis. It is adapted here for a different purpose. An SPG
for a method is a locally-resolved points-to graph: it con-
tains real points-to relations that can be resolved within the
method while using placeholder symbolic nodes to represent
objects that are created outside the method.

The SPG construction is done in two steps: in the first
step, an intraprocedural SPG is built for each method; and
in the second step, method-level SPGs are connected to
form the interprocedural SPG (ISPG). Eventually, may alias

o��

��������������

a��t��

���

����� ��� ���� ����
���� ��� ����� ������� ��� ������ ����

o��
���

��������

�������
e�

t�
����������

this�
�������v��o��

���

w�� o��
���

�������

b��
�������

o��
���

this��
�����������������

t��

�������������

p��

������ ������

c�� d��

�������� �������

t�� m��

o�� ���

�������

���

S�

��S�

�������
����� S�

��

����

���

S�

���

S�

���

����

���

O��

���

O��

��� ��������� ���� ����� ��������� �����
������ ����� ���� �� ���� ���� � ����� ���� ���� �� ���� ���� �

�������
�������

�������
�������

S�

���S�

�������
������ S�

���

����

���

�������

�
O��O��

��� ���

O��
������

������

�
S�

�������

��� ���

S��

���

�

O�S��
����

�������
�������

������
��

���

Figure 2: Program representations for the running example: (a) flow graph used by the Sridharan-Bodik
formulation, and (b) interprocedural symbolic points-to graph (ISPG) used by our formulation.

queries are answered on-demand by performing graph traver-
sals on the ISPG.

Each intraprocedural symbolic points-to graph has the fol-
lowing types of nodes and edges: (1) local variables v ∈ V;
(2) allocation nodes o ∈ O; (3) symbolic nodes s ∈ S rep-
resenting outside objects; (4) edges v → oi ∈ V × O repre-
senting that variable v may point to allocation node oi; (5)
edges v → si ∈ V×S representing that variable v may point
to an object defined outside of the current method, with the
symbolic node si used as a placeholder for that object; (6)

edges oi
f
−→ oj ∈ (O ∪ S) × Fields × (O ∪ S) representing

that the field f of oi may point to oj .
There are multiple possible ways to construct an SPG. For

ease of understanding, we present an SPG construction ap-
proach based on the Sridharan-Bodik (SB) CFL-reachability
formulation discussed in Section 2. First, symbolic nodes
are introduced, by modifying the flow graph described in
Section 2 as follows. (1) For each formal parameter f of a

method: edge s
new
−−→ f , where symbolic node s represents the

object passed from outside; (2) For each call site v = m():

edge s
new
−−→ v, where symbolic node s is used to represent the

return object of the call; (3) For each field access v.f that

has been read at least once in the method: edges s
new
−−→ t

and t
store(f)
−−−−→ v, where symbolic node s is used to represent

the heap location that v.f points to, and temporary variable
t connects s and v.f .

The construction of the SPG is done by computing in-
traprocedural flowsTo-paths on this augmented flow graph.
Given these paths, a points-to edge v → o is added to the

SPG if o flowsTo v. A points-to edge o1
f
−→ o2 is added to

the SPG whenever there exists a flow graph edge y
store(f)
−−−−→ x

such that o1 flowsTo x and o2 flowsTo y.
To perform an interprocedural analysis, method-level SPGs

are connected to build an interprocedural symbolic points-to
graph (ISPG). The ISPG, simply a set of SPGs connected by
edges representing calls, is still not a fully resolved points-to
graph. For each call site of the form r = a0.m(a1, ..., ai, ...)
and each formal-actual pair (fi, ai) of this call site, an entry
ISPG edge is added from any allocation or symbolic node
that ai points to (in the SPG of the caller), to the symbolic
node s created in the callee as a placeholder for fi. For the
return value, an artificial return variable ret is introduced in
the callee, and an exit ISPG edge is added from any alloca-
tion or symbolic node that ret points to (in the SPG of the
callee), to the symbolic node s which was introduced as a
placeholder of the return value at the call site. These entry

and exit edges are labeled with the call site’s unique iden-
tifier, which will be used later to achieve context-sensitivity
in the alias analysis.

The ISPG for the running example is shown in Figure 2b.
Circles, white boxes, and shaded boxes represent variables,
allocation sites, and symbolic nodes, respectively. The ISPG
is a partially-resolved heap graph and relationships among
symbolic nodes are unclear at this time—for example, it is
possible for different symbolic nodes to represent the same
object. The goal of the alias analysis is to make these
relationships clear by computing CFL-reachability on this
graph.

In this analysis, the aliasing relation between two variables
is defined in terms of the memory aliasing between the al-
location or symbolic nodes they point to. In other words,
for two variables v1 and v2 in V, if there exist pointed-to
nodes o1 and o2 in O ∪ S such that there is a memAlias-
path between o1 and o2 in the ISPG, then v1 and v2 are
aliases. (The memAlias context-free language will be de-
fined shortly.) SincememAlias is computed only along paths
containing allocation and symbolic nodes, the discussion be-
low will use “nodes” to refer to such nodes only, unless noted
otherwise.

3.2 Context-Insensitive Alias Analysis
Two nodes o1 and o2 are memory aliases if they can rep-

resent the same run-time object. The memory alias relation
(⊆ (O∪S)× (O∪S)) can be described using a context-free
language memAlias defined as follows:

memAlias → f̄ memAlias f | memAlias memAlias

| entry | entry | exit | exit | �

Informally, two nodes o1 and o2 are considered to be mem-
ory aliases if (1) they are reachable from nodes o3 and o4, (2)
the field label strings on the two paths are the same, and (3)
o3 memAlias o4. For now, context sensitivity is not consid-
ered and thus ISPG entry and exit edges are not matched;
the context sensitivity checks will be discussed shortly. As
an example, using this formulation we can quickly determine
that t7 and t11 are aliases (in Figure 2b), because symbolic
nodes s2 and s5 (that t7 and t11 point to, respectively) are
reachable from node o20 and the two field edge label se-
quences are both “data”. Note that the identification of this
relationship does not require any knowledge of what are the
actual objects that s2 and s5 can represent.

memAlias vs. alias in [26]. It is important to note
that our memAlias formulation simplifies the alias analysis
by using heap reachability (i.e., sequences of points-to edges)

Algorithm 1: Context-sensitive alias analysis.

Input: symbolic/alloc node n1, symbolic/alloc node n2

Output: true/false indicating whether n1 and n2 can be
memory aliases

1 if n1 = n2 then

2 return true

3 worklist ← {(n1, ∅, ∅)} // worklist of (node, stack, stack)
4 while worklist �= ∅ do

5 remove a triple (n,fldStkn, cxtStkn) from worklist
6 foreach edge e ∈ incomingEdges(n) do

7 (fldStk , cxtStk) ← clone(fldStkn, cxtStkn)

8 if e is a FieldPointsToEdge
f
−→ then

9 fldStk .push(f)

10 else if e is an EntryEdge entryi then

11 if cxtStk �= ∅ then

12 if cxtStk .top() = i then

13 cxtStk .pop()

14 else

15 continue

16 else if e is an ExitEdge exiti then

17 cxtStk .push(i)

18 if source(e) = n2 then // check for termination
19 if fldStk = ∅ then

20 return true

21 else

22 continue

23 worklist ← worklist ∪ {(source(e),fldStk , cxtStk)}

24 foreach edge e ∈ outgoingEdges(n) do

25 (fldStk , cxtStk) ← clone(fldStkn, cxtStkn)

26 if e is a FieldPointsToEdge
f
−→ then

27 if fldStk .top() = f then

28 fldStk .pop()

29 else

30 continue

31 else // entry and exit edges handled in a similar way

32 . . .

33 if target(e) = n2 then // check for termination

34 if fldStk = ∅ then

35 return true

36 else

37 continue

38 worklist ← worklist ∪ {(target(e),fldStk , cxtStk)}

39 return false

to approximate the actual pointer value flows (i.e., sequences
of assignments) modeled by language alias (defined in Sec-
tion 2) in the SB formulation. This simplification may lead
to spurious aliasing relationships. Despite the potential im-
precision in handling field-sensitivity, the overall precision
of our alias analysis has been shown to be even higher than
the precision of the SB analysis within the same time bud-
get. The simple structure (and especially the symmetry)
of the language yields an efficient algorithm that has lower
cost. This allows the analysis to spend a more significant
portion of the time budget on the handling of context sen-
sitivity (compared to the SB analysis), leading to a closer
approximation of a fully context-sensitive solution.

3.3 Handling of Context Sensitivity
A context-sensitivity check can be performed along with

the field-sensitivity check to ensure that entries and exits
are properly matched. The grammar for this dimension of
checking is defined in an expected way as follows:

C → (i C)i | C C | f | f̄ | �

(i → entry(i) | exit(i))i → exit(i) | entry(i)

In the absence of recursive calls, the total number of open
parentheses in the graph is finite, and thus LC is a finite reg-
ular language. The handling of recursion will be discussed
shortly. In the analysis implementation, LC is augmented
to model partially matched parentheses, so that a valid LC-
path could contain unbalanced closing parentheses as a pre-
fix and unbalanced opening parentheses as a suffix. Similarly
to the handling of context-sensitivity in existing analyses,
we design a trade-off framework that allows a programmer
to specify a budget (i.e., either running time, or number of
graph nodes processed) to answer each query. The analy-
sis gives up a context-sensitive graph traversal and uses a
context-insensitive solution if the user-defined budget runs
out. An interesting observation from our experiments is that
once the budget exceeds a certain value, the precision of the
analysis remains almost constant. This is because variables
that are true (context-sensitive) aliases are usually close to
each other and a memAlias-path between nodes that they
point to can be easily found within the budget.

A brief description of the analysis algorithm is given in Al-
gorithm 1. A worklist is maintained to process graph edges
that need to be traversed. Each worklist element is a triple
that contains a node n, a stack fldStk that is used to solve
memAlias reachability, and a stack cxtStk that models call-
ing contexts. Node n is reachable from the starting node
n1 along a path that is a valid prefix of a context-sensitive
memAlias-path. Inverse edges are not explicitly represented
in the graph; traversing backward an incoming edge with
label t (lines 6–23) is the equivalent of traversing the inverse
edge with label t̄. Stack fldStk describes a sequence of un-
matched f̄ labels for the fields f encountered along the path
from n1 to the current node n. Following an outgoing edge
with a field label (line 26) requires matching this label with
the last unmatched f̄ which currently resides at the top of
fldStk (line 27). If the target node n2 is reached and fldStk
is empty (at lines 19 and 34), the field edge labels along the
path from n1 to n2 are properly matched.

Stack cxtStk describes a sequence of unmatched entry and
exit labels seen on the path from n1 to n. For example, at
line 17, the call site i is remembered because an incoming
exit edge was traversed backward, which corresponds to ob-
serving a label exit(i). The labels on the stack represent
unmatched open parentheses (i. When a closing parenthe-
sis)i is observed (e.g., at line 10, where an entry edge is
traversed backward), a context-sensitivity check against the
top of the stack is performed if the stack is not empty. If
it is empty, the unchanged stack is added to the worklist
because the grammar allows unbalanced)i parentheses as a
prefix of the LC-path. The termination checks (lines 18–22
and 33–37) do not consider cxtStk since the grammar allows
unbalanced (i parentheses as a suffix.

3.4 Handling of Recursive Data Structures
One important technical challenge is the handling of re-

cursion, as a typical context-sensitive analysis does not ter-
minate in the presence of recursion without appropriate ap-
proximations. One such approximation, as used in [29], is to
treat methods in a strongly connected component (SCC) of
the call graph in a context-insensitive manner. However, sig-
nificant precision loss could result from this handling [10],
since an SCC in a (pre-computed) context-insensitive call

a
f�

b h

c

f�

d
f�

e
f�

f�

g

f�

f�

i

f�f�
f�

j

g f� * f� a f� * f� j g memAlias j

Figure 3: Handling of recursive data structures.

graph can contain thousands of methods due to spurious
call graph edges. The SB analysis improves this approach
by looking for CFL paths on context-sensitive call chains:
the points-to set of a call site receiver variable is determined
under the calling context for which this call site is encoun-
tered in the analysis. While this handling can improve pre-
cision to a certain degree (e.g., by reducing the size of an
SCC), its effectiveness is still limited by the collapsing of
SCCs. Intuitively, methods in an SCC should be modeled
context-sensitively if they do not cause cycles in the data
flow (e.g., flowsTo- and alias-paths) being computed, which
determines the termination of the analysis.

We propose a different technique that maintains higher
precision for SCC methods, by approximating recursive data
structures, instead of recursive calls. This ability of the anal-
ysis is due to the special modeling of the heap structure in
a symbolic points-to graph. Recursive calls do not have any
influence on the termination of the analysis algorithm, unless
recursive data structures are encountered during the traver-
sal of such calls. In Algorithm 1, we maintain knowledge of
each entry and exit edge that was already visited, and such
a visited edge cannot be used to extend the current path.
This handling is sound because (1) re-traversing a method
can be safely avoided if it does not involve any data flow
(e.g., always takes entry and exit edges); and (2) if data
flow (i.e., through field edges) is involved in the traversal, a
recursive data structure must have already been detected be-
fore following an entry or exit edge the second time. Hence,
it is sufficient to focus only on the handling of recursive data
structures, without consideration for recursive calls.

To approximate aliasing relationships in the presence of
recursive data structures, cycles on a memAlias-path are de-
tected on-the-fly along with the CFL-reachability computa-
tion. Field edge labels in each cycle detected are represented
by a wildcard symbol (i.e., *), which can match an arbitrary
sequence of (normal and inverse) field edge labels. Figure 3
illustrates our handling of recursive data structures. Note
that each of the two cycles f2f1f4f3 and f1f2 is represented
by a * symbol. As a wildcard can represent arbitrary fields,
there exists a memAlias-path from g to j. In the actual im-
plementation of the analysis, labels that a specific wildcard
* can represent are remembered, so that when this * is on
the top of the stack, the analysis can quickly decide whether
to match an edge with this *, or to pop the * and then use
the next edge on the stack for matching.

For the context-insensitive memAlias-reachability compu-
tation, a cycle can be easily detected by checking whether
an edge (to be processed) is already in stack fldStk. It is
more difficult to detect a cycle when the checks of context-
sensitivity and field-sensitivity are performed simultaneously
(i.e, both languages memAlias and LC are considered). For

Algorithm 2: Context-sensitive handling of recursive
data structures.
Input: symbolic/alloc node n1, symbolic/alloc node n2

Output: true/false indicating whether n1 and n2 can be
memory aliases

1 if n1 = n2 then

2 return true

3 worklist ← {(n1, ∅, ∅)} // worklist of (node, stack, stack)

4 while worklist �= ∅ do

5 remove a triple (n,fldStkn, cxtStkn) from worklist

6 foreach edge e ∈ incomingEdges(n) do

7 . . .
8 nodesInCycle ← ∅
9 if (i ← index(e,fldStk)) ≥

0 ∧ match(fldStk .callingContextAt(i), cxtStk) then

10 for j ← 0; j < i; j ← j + 1 do

11 edge d = fldStk .pop()
12 nodesInCycle ←

nodesInCycle ∪ {source(d)} ∪ {target(d)}

13 fldStk .push(*, cxtStk)

14 foreach node n� ∈ nodesInCycle do

15 foreach edge e� ∈

incomingEdges(n�) ∧ source(e�) /∈ nodesInCycle do

16 if e� is a FieldPointsToEdge then

17 fldStk � ← clone(fldStk)

18 fldStk �.push(e�, cxtStk)
19 worklist ←

worklist ∪ {(source(e�),fldStk �, cxtStk)}

20 else // e� is an entryi or exiti edge

21 . . .

22 foreach edge e ∈ outgoingEdges(n) do

// handled in a similar way

23 return false

example, an ArrayList can have another ArrayList as its
element. In this case, a field edge from a symbolic node rep-
resenting an ArrayList object in one of its methods (such as
add) to a symbolic node representing its internal array may
be visited multiple times during a single traversal. How-
ever, this does not indicate a recursive data structure, but
instead, it is due to the nesting of different objects in the
data structure. We solve this problem by augmenting each
edge in fldStk with a context stack that represents the call
chain under which this edge is processed. To detect a cy-
cle, we check (1) whether a field edge to be processed is in
fldStk and if it is (2) whether the current calling context
(represented by stack cxtStk) matches the calling context
associated with the existing field edge in fldStk (the latter
should be a prefix of the former).

The detailed algorithm for handling of cycles is shown in
Algorithm 2. Once a cycle is detected (i.e., an edge e appears
twice and the contexts match each other, shown at line 9),
edges in stack fldStk between the two occurrences of e are
replaced with a *; this new element of fldStk is associated
with the current calling context cxtStk (lines 10–13). Set
nodesInCycle contains all nodes in this cycle. Eventually,
nodes that are adjacent to the cycle but are not in the cycle
are added to the worklist (lines 14–21). These nodes will
be processed regardless of whether or not they have been
visited before, because a new cycle is identified and this
could potentially lead to the identification of new aliasing
relationships.

4. COMPUTINGPROCEDURALREACHA-

BILITY SUMMARY
A method can be analyzed multiple times (under differ-

ent calling contexts) during the CFL-reachability computa-
tion. This is usually the case even for answering one single
alias query. To see this, consider the example from the last
section, where an ArrayList object o1 is added into an-
other ArrayList object o2. If the aliasing relationship to
be queried involves an object retrieved from o1, the graph
traversal would go through methods add and get at least
twice in order to understand the data structure. While ana-
lyzing a method multiple times can degrade significantly the
analysis performance, it is not straightforward to decide how
to speed up this process, as the method can be reached from
different calling contexts, under which its behaviors can be
completely different.

Existing work such as the SB analysis attempts to cache
the (intermediate) analysis result for a method under a cer-
tain context, so that this result can be reused when the
method is re-analyzed under this particular context. How-
ever, the effectiveness of this approach is limited in the fol-
lowing two important aspects. First, results can be cached
only for specific contexts, while a method can be analyzed
under a great number of different contexts. Second, the
analysis can enter and exit a method through different pa-
rameters (including the return value), and it is unclear how
caching should be performed for these different entries and
exits. Hence, caching is often done in an ad-hoc manner
(i.e., there does not exist a systematic way to perform it).
Caching of analysis results is usually performed within a
single query and cannot work across queries.

It is well-known that the effort of reanalyzing methods
can be effectively reduced by using procedural summaries
(e.g., [31, 1, 30, 22, 21, 23]). However, it is unclear how to
compute summaries for a demand-driven analysis based on
a CFL-reachability formulation. In this section, we propose
to compute a procedural reachability summary (PRS) for a
method, which summarizes a set of partial memAlias paths
that go through this method—that is, each path enters the
method through an entry or exit edge and leaves the method
through an entry or exit edge. This summary is computed
online during the CFL-reachability computation and is ap-
plied every time this method is reached in the analysis.

More formally, for a method m, consider the set E of
symbolic or allocation nodes, where each node has either
an incoming entry i edge or an outgoing exiti edge (where
i represents a call site that invokes m). A PRS for m is a

set of paths, each of the form n1
p
�−→ n2, where n1, n2 ∈ E

and n1 �= n2. Here p is either a sequence of field points-to
edges (f1f2f3 . . . fn) or a sequence of inverse field points-to
edges (f1 f2 f3 . . . fn), summarizing the reachability infor-
mation between n1 and n2. Note that the PRS also contains

n2
p̄
�−→ n1. For example, the PRS for method add in Figure 1

contains the sequence p = (data, arr elm) from node S1 to
node S3, as well as the corresponding sequence p̄ in the op-
posite direction.

The summary computation is formulated as an all-pairs
CFL-reachability problem over the node set E . Because the
goal is to find field edge strings between any two nodes n1

and n2 in E , the CFL-reachability computation is still per-
formed as described earlier, but this time we allow unbal-
anced field edges. The actual graph paths traversed during

the summary computation start at n1 and end at n2. Each
such path can (1) cross m and all methods (directly or transi-
tively) invoked bym, (2) have matched entry/exit edges, and
(3) have both matched and unmatched field edges. The en-
try/exit edges along the path correspond to balanced paren-
theses for language LC. To construct the summary string p

for n1
p
�−→ n2, all matched (entry/exit or field) labels are

excluded from the path, leaving only the unmatched field
edges.

When a call site that invokes m needs to be analyzed later
in a graph traversal—that is, when a node n1 in the set
E of m is reached through an entry or inverse exit edge—

the summary paths n1
p
�−→ n2 are retrieved. To apply the

summary, all field labels in sequence p are pushed onto (or
popped from) fldStk ; whether to perform pushes or pops
is determined by the edge direction in p. Next, any node
outside m and connected with n2 by an exit or inverse entry
edge (properly matching the entry/exit edge reaching n1)
is added into the worklist for further processing. At a very
high level, this process is similar to the use of summary edges
in a system dependence graph for interprocedural program
slicing [19].

Note that a method’s PRS encodes only its partial reach-
ability information, that is, paths that cannot reach a node
in E are omitted from the summary. It would be extremely
expensive for a method summary to contain the complete
reachability information (not only in the method but also in
methods reachable from it). Thus, applying m’s summary at
a call site that invokes m can cause unsoundness if any node
involved in an alias query is either in m itself or a method
reachable from m in the call graph. To solve this problem,
for each query regarding the (memory) aliasing relationship
between nodes n1 and n2, we first check whether the meth-
ods that contain n1 and n2 are reachable from m, upon
reaching a call site that invokes m. If they are, we perform
regular CFL-reachability computation instead of applying
summaries. If these methods are not reachable from m, m’s
PRS can be safely applied.

As PRSs are computed online, interleaved with the regular
CFL-reachability analysis, a key factor for analysis perfor-
mance is the selection of an appropriate set of methods for
which summaries are computed. This is because the compu-
tation of a method’s PRS (i.e., all-pairs CFL-reachability) is
more expensive than a regular traversal of the method (i.e.,
single-source CFL-reachability). Hence, it would be use-
less, or even harmful, to compute summaries for methods
that are invoked from a small number of call sites. Fur-
thermore, methods whose nodes are likely to be frequently
queried should not be considered for summary computation
as their summaries are not used anyway when nodes in them
are in a query. From our experience, library methods (e.g.,
methods in data structure classes HashMap, ArrayList, etc.)
are good candidates for summary generation, as these meth-
ods can be called a very large number of times in real-world
programs. In addition, a client analysis (that makes use of
this alias analysis) usually focuses on the application code
and thus is unlikely to make queries regarding aliasing rela-
tionships among nodes in these library methods.

We use a simple metric to choose such library methods.
For each method m, we consider the ratio between the num-
ber of incoming call graph edges for m, and the average
number of incoming call graph edges for all methods. When
this value exceeds a certain threshold, m’s summary is com-

Benchmark #Methods #Statements #SB/ISPG Nodes #SB/ISPG Edges #Queries
compress 2344 43938 18778/10977 18374/3214 83421
db 2352 44187 19062/11138 18621/3219 62478
jack 2606 53375 22185/12605 21523/15560 160170
javac 3520 66971 23858/14119 23258/3939 386724
jess 2772 51021 22773/13421 21769/4754 257032
mpegaudio 2528 55166 22446/12774 21749/4538 222432
mtrt 2485 46969 20344/11878 19674/3453 120042
soot-c 4583 71406 31054/18863 29971/5010 712816
sablecc-j 8789 125538 44134/26512 42114/9365 357012
jflex 4008 25150 31331/18248 30301/4971 159046
muffin 4326 80370 33211/19659 32497/5282 1234635
jb 2393 43722 19179/11275 18881/3146 9045
jlex 2423 49100 21482/11787 20643/3846 51480
java cup 2605 50315 22636/13214 21933/3438 14534
polyglot 2322 42620 18739/10950 18337/3128 1600116
antlr 2998 57197 25505/15068 24462/4116 528891
bloat 4994 79784 38002/23192 35861/5428 1326732
jython 4136 80067 34143/19969 33970/5179 971376
ps 5278 84540 39627/23601 38746/5646 5000

Table 1: Benchmark characteristics.

puted. While this is a simple metric, it is quite effective
in selecting methods for which it is worth computing sum-
maries. The next section presents experimental studies with
different threshold values.

5. EVALUATION
The proposed alias analysis was implemented using the

Soot 2.3.0 program analysis framework for Java [28]. In
order to compare our analysis with previous work (such
as [26]), the Sun JDK 1.3.1 01 library was used in all studies.
Experiments are performed on a machine with an Intel Xeon
2.83GHz processor and a maximum JVM heap space of 2GB.
A total of 19 Java programs were studied in our experiments,
and their characteristics are shown in Table 1 (this informa-
tion also appears in [32]). The first two columns “#Meth-
ods” and “#Statements” show the total numbers of methods
in context-insensitive call graphs constructed by the Spark
framework in Soot [9] and the numbers of statements in
these methods. Shown in columns “#SB/ISPG Nodes” and
“#SB/ISPG Edges” are the total numbers of nodes (edges)
in the program representation used in the SB analysis [26]
(i.e., the flow graph) and our representation (i.e., the ISPG
restricted to allocation/symbolic nodes, since only they can
occur on memAlias-paths). The numbers of nodes and edges
in our representation are much smaller than those in the flow
graph. The last column shows the total number of queries
performed in each benchmark, and will be discussed shortly.

5.1 Methodology
The precision and performance of the proposed analysis

are compared against those of a traditional alias analysis
that uses points-to analyses to determine aliasing relation-
ships. Here we consider two state-of-the-art points-to anal-
yses, namely the SB points-to analysis in [26] and the 1-
object-sensitive points-to analysis implemented in the Pad-
dle context-sensitive analysis framework [14]. To simulate
how a client analysis would use the alias analysis, we imple-
mented a data dependence client that performs alias queries
regarding variables x and y for all pairs of heap dereference
statements that access the same field f (i.e., x.f and y.f)
where at least one statement writes to f . If x and y may
alias, the two statements may access the same heap location
and thus may have a data dependence. All possible pairs of
heap dereference statements are considered so that the alias

queries used for evaluation are not biased. Dependence anal-
ysis is an important component of many real-world software
tools, such as program slicers and data race detectors.

An inexpensive context-insensitive points-to analysis (in
Spark) is performed as a first step to prune pairs of state-
ments that can be determined to access different heap lo-
cations in a context-insensitive setting. Next, a context-
sensitive analysis (i.e., our analysis or the SB analysis) is
performed to further prune the alias pairs. We found that
the 1-object-sensitive analysis from [14] (which is a whole-
program analysis) runs an order of magnitude slower than
our alias analysis and the SB analysis (both of which are on-
demand analyses), and yet its precision is lower. Hence, we
choose not to include comparison details; instead, we focus
on the comparison between the SB analysis and our analysis.

5.2 Comparison with the SB Analysis
In this set of experiments, a fixed amount of time is consid-

ered as the per-query budget. By default, the SB analysis
uses the number of nodes traversed as the metric for the
budget. We modify the analysis to use the absolute time,
in order to enable a fair comparison. This is because the
two program representations are not the same and thus the
numbers of nodes in the two graphs are not compatible met-
rics.

If the alias analysis cannot answer a query within this time
limit, a context-insensitive solution is used instead. The
total number of queries performed for each benchmark is
shown in the last column of Table 1. We have compared
the precision of the two analyses under different time bud-
gets: 1ms, 2ms, 5ms, and 10ms. The results are shown in
Table 2. Column SDA reports the precision of our analysis
when summary generation is enabled. The reader can ignore
this column for now; details about this comparison can be
found later in Section 5.3.

Our analysis reports smaller numbers of alias pairs for 12,
13, 14, and 14 programs, under time budgets 1ms, 2ms, 5ms,
and 10ms, respectively. For some of these programs, such as
javac, our analysis reports a significantly smaller number
of alias pairs than the SB analysis. Note that for this com-
parison, we do not compute and use procedural reachability
summaries. The analysis would produce even more precise
alias information when summaries are used (details will be
discussed shortly).

Benchmark SB(1ms) DA(1ms) SB(2ms) DA(2ms) SB(5ms) DA(5ms) SB(10ms) DA(10ms) SDA(10ms)
compress 1193 1192 1193 1192 1193 1192 1193 1192 1191
db 1039 1039 1039 1039 1039 1039 1039 1039 1038
jack 48807 48802 48806 48802 48804 48801 48804 48801 48801
javac 105512 59547 105485 59547 105472 59549 105439 59498 59481
jess 4047 4048 4047 4044 4047 4044 4047 4046 4046
mpegaudio 2982 2899 2978 2899 2978 2899 2972 2899 2899
mtrt 1611 1602 1611 1603 1604 1598 1604 1598 1596
soot-c 10378 10319 10363 10314 10363 10305 10381 10305 10285
sablecc-j 11447 11461 11447 11461 11447 11461 11445 11461 11461
jflex 6080 6077 6079 6078 6079 6078 6079 6076 6075
muffin 8154 8156 8153 8156 8151 8156 8151 8156 8156
jb 902 905 902 904 900 904 900 905 905
jlex 17756 17794 17747 17796 17747 17792 17748 17796 17758
java cup 2909 2910 2908 2910 2908 2910 2908 2910 2910
polyglot 2933 2933 2933 2933 2933 2933 2933 2933 2933
antlr 27963 21303 27774 21303 27668 21300 27837 21300 21299
bloat 288085 288062 288085 288063 288085 288060 288086 288055 287570
jython 51453 51449 OM* 51446 OM* 51445 OM* 51445 51443
ps 4657 4408 4657 4411 4657 4410 4657 4411 4413

Table 2: Comparison between our analysis and the SB points-to analysis. Columns SB and DA show are the
numbers of alias pairs reported by the SB analysis and by our demand-driven alias analysis (DA). Column
SDA shows the numbers of alias pairs reported by the summary-based analysis under configuration T = 2.
The numbers in parentheses are the time budgets used to answer each alias query. OM* means the analysis
runs out of memory.

For the programs where the SB analysis is more precise,
the results of the two analyses are actually very close. To
understand why our analysis performs surprisingly better
in some cases, we carefully inspected the analysis solutions
for these cases. Below we report a concrete case study for
javac that shows a typical situation that prevents the SB
analysis from generating highly-precise solutions, and how
our analysis ameliorates the problem.

Case study for javac. The SB analysis reports that
statements r0.left=$r12 in ConditionalExpression.inline

and r0.left=$r7 in BinaryShiftExpression.selectType

can access the same heap location, while ours does not. By
inspecting the program, we found that the points-to sets of
the two r0 variables computed by the SB analysis contain
a common spurious object that obviously could not flow to
either of these variables. The analysis starts with a context-
insensitive points-to set and keeps refining it (i.e., following
more and more precise flowsTo-paths until the budget runs
out). This common spurious object is actually in the ini-
tial context-insensitive points-to sets of both r0. The SB
analysis cannot filter it out within the budget primarily be-
cause there are very large SCCs in javac’s call graph (i.e.,
almost all methods are in SCCs). It is impossible to verify
whether or not there exists a flowsTo-path by handling SCCs
context-insensitively. In addition, the method that contains
this spurious object is far away from methods inline and
selectType, making it difficult to prove or disprove the ex-
istence of a CFL path. In fact, inline and selectType are
very close to each other, and it is much easier for our analysis
to check memAlias-paths between them. This is a common
case that appeared often during our code inspection. We
found similar frequently-occurring cases that could not be
described due to space limitations. All of them may con-
tribute to the precision difference between the two analyses.

5.3 Evaluation of Summary-Based Analyses
To demonstrate the effectiveness of procedural reachabil-

ity summary, we compare the total running times of the two
versions of our analysis, one with the summary generation
and the other without. For this set of experiments, the total

number of nodes traversed in each query is used as the per-
query budget (1000 nodes was used in this experiment). As
the total number of nodes traversed can be considered as an
indication of precision, the goal of using a fixed number of
nodes as budget is thus to compare the running times of our
analysis under different configurations to achieve roughly the
same precision (an actual precision comparison is presented
shortly).

Running time. For the summary-based analysis, differ-
ent threshold values T are used (i.e., 1, 2, 5, 10, 15, and 20)
to determine whether or not a method should be subjected
to summarization. As discussed in Section 4, for a method
m we consider the ratio between the number of incoming
call graph edges of m, and the average number of incom-
ing call graph edges for all methods. When this ratio is
greater than T , the analysis computes and uses a reachabil-
ity summary for m. To understand the performance of the
analysis under these different configurations, for each such
configuration, we compute the geometric mean (GM) of the
analysis running times over the 19 programs. In general, the
summary-based analyses were faster than the non-summary
one (GM nosumm = 10970 ms). For the six summary-based
configurations studied, T = 2 (GM summ(2) = 8127 ms) and
T = 20 (GM summ(20) = 9205 ms) are the ones with the best
and the worst performance. Running times for the other
configurations are between GM summ(2) and GM summ(20). In
our experiments, T = 2 seems to be an appropriate threshold
value that achieves a balance: computing summary for ei-
ther too many methods (T = 1) or too few methods (T > 2)
is less beneficial. Compared with the non-summary version,
the analysis with T = 2 achieves an average running time
reduction of 23.8%. A detailed comparison of the perfor-
mance improvements under several configurations is shown
in Figure 4.

Precision. We have also compared the precision of a
summary-based version of our analysis against that of a
non-summary-based version and of the SB analysis under
the same time budget. We run our summary-based analysis
under the best configuration that we have observed (T = 2),
and specify 10ms as per-query budget. We chose this longest

����

����

����

����

��

���

���

���

���

���

���

���
���
����
����

Figure 4: Comparisons among summary-based configurations. The y-axis shows the performance improve-
ment over the non-summary version: (RTnosumm − RT summ)/RT nosumm where RT stands for running time.

time (10ms) as the budget because the SB analysis achieves
its highest precision under this time. The numbers of alias
pairs reported by this summary-based analysis are shown in
Column SDA of Table 2. For most programs in our bench-
mark set, SDA is more precise than both the non-summary-
based analysis (column DA) and the SB analysis.

6. RELATED WORK
There exists a very large body of work on points-to/alias

analysis. We refer the reader to [4, 24, 8, 25] for a broader
discussion of these analyses. The description in this section
is limited to the CFL-reachability-based analysis algorithms
that are most closely related to our technique.

Work by Reps et al. [18, 19, 5, 16, 20] proposes to model
realizable paths using a context-free language that treats
method calls and returns as pairs of balanced parenthe-
ses. Sridharan et al. define a CFL-reachability formulation
to precisely model heap accesses, which results in demand-
driven points-to analyses for Java [27, 26]. Combining the
CFL-reachability formulations of both heap accesses and
interprocedural realizable paths, [26] proposes a context-
sensitive analysis that achieves high precision by refining
points-to relationships.

CFL-reachability can be used to implement a variety of
static analyses, such as polymorphic flow analysis [15], shape
analysis [17], and information flow analysis [11]. The work
in [6, 12] studies the connection between CFL-reachability
and set constraints, shows the similarity between the two
problems, and provides new implementation strategies for
problems that can be formulated in this manner. Work
from [7] extends set constraints to express program anal-
yses involving one context-free and any number of regular
reachability properties.

Our previous work [32] proposes a whole-program alias
analysis based on a CFL-reachability formulation that can
be used to quickly terminate the traversal of a false flowsTo
path in order to speed up the Sridharan-Bodik points-to
analysis. This analysis does not provide on-demand capa-
bilities, and achieves context-sensitivity by cloning SPG sub-
graphs. Zheng and Rugina [33] present a CFL-reachability
formulation of alias analysis and implement a context-insen-
sitive demand-driven analysis for C programs. The key
insight is that aliasing information can be directly com-
puted without having to compute points-to information first.
While our analysis is based on this same insight, it is tailored

for Java and is fully context-sensitive. This is accomplished
by designing completely different context-free languages, for-
mulations, and algorithms.

7. CONCLUSIONS
This paper presents a demand-driven alias analysis for

the Java language. Unlike existing analyses for Java, it
answers alias queries by computing CFL-reachability alias
information directly, instead of relying on an underlying
points-to analysis. The analysis performs field-sensitivity
and context-sensitivity checks simultaneously over an in-
terprocedural symbolic points-to graph—a heap structure
approximation that contains locally-resolved points-to re-
lationships and uses placeholder symbolic nodes to repre-
sent unidentified objects. This structure of the ISPG allows
us to develop a simple context-free language memAlias and
an efficient algorithm for context-sensitive CFL-reachability
based on this language. To further improve analysis perfor-
mance, we propose to compute and use online summaries for
methods whose processing could have substantial effects on
analysis running time. We have empirically compared the
proposed approach with a state-of-the-art demand-driven
points-to analysis [26]. We found that our analysis can pro-
duce more precise solutions than this existing analysis when
they are run with the same time budget. The experimental
results also show that when the set of methods for which
summaries are computed is selected appropriately, the use
of summaries can reduce significantly the analysis running
time. These findings suggest that our analysis is a good
candidate for use in software tools.

Acknowledgments

We thank the anonymous reviewers for their valuable and
thorough comments. This material is based upon work sup-
ported by the National Science Foundation under CAREER
grant CCF-0546040, grant CCF-1017204, and by an IBM
Software Quality Innovation Faculty Award. Guoqing Xu
was supported in part by an IBM Ph.D. Fellowship Award.

8. REFERENCES

[1] R. Chatterjee, B. G. Ryder, and W. Landi. Relevant
context inference. In ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages,
pages 133–146, 1999.

[2] S. Guyer and C. Lin. Client-driven pointer analysis. In
Static Analysis Symposium, pages 214–236, 2003.

[3] N. Heintze and O. Tardieu. Demand-driven pointer
analysis. In ACM SIGPLAN Conference on

Programming Language Design and Implementation,
pages 24–34, 2001.

[4] M. Hind. Pointer analysis: Haven’t we solved this
problem yet? In ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools and

Engineering, pages 54–61, 2001.

[5] S. Horwitz, T. Reps, and M. Sagiv. Demand
interprocedural dataflow analysis. In ACM SIGSOFT

International Symposium on the Foundations of

Software Engineering, pages 104–115, 1995.

[6] J. Kodumal and A. Aiken. The set constraint/CFL
reachability connection in practice. In ACM
SIGPLAN Conference on Programming Language

Design and Implementation, pages 207–218, 2004.

[7] J. Kodumal and A. Aiken. Regularly annotated set
constraints. In ACM SIGPLAN Conference on

Programming Language Design and Implementation,
pages 331–341, 2007.

[8] O. Lhoták. Program Analysis using Binary Decision

Diagrams. PhD thesis, McGill University, 2006.

[9] O. Lhoták and L. Hendren. Scaling Java points-to
analysis using Spark. In International Conference on
Compiler Construction, pages 153–169, 2003.

[10] O. Lhoták and L. Hendren. Context-sensitive points-to
analysis: Is it worth it? In International Conference
on Compiler Construction, pages 47–64, 2006.

[11] Y. Liu and A. Milanova. Static analysis for inference
of explicit information flow. In ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis

for Software Tools and Engineering, pages 50–56, 2008.

[12] D. Melski and T. Reps. Interconvertibility of a class of
set constraints and context-free-language reachability.
Theoretical Computer Science, 248:29–98, 2000.

[13] A. Milanova, A. Rountev, and B. G. Ryder.
Parameterized object sensitivity for points-to analysis
for Java. ACM Transactions on Software Engineering

and Methodology, 14(1):1–41, 2005.

[14] Paddle Framework, www.sable.mcgill.ca/paddle.

[15] J. Rehof and M. Fähndrich. Type-based flow analysis:
From polymorphic subtyping to CFL-reachability. In
ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 54–66, 2001.

[16] T. Reps. Solving demand versions of interprocedural
analysis problems. In International Conference on
Compiler Construction, pages 389–403, 1994.

[17] T. Reps. Shape analysis as a generalized path
problem. In ACM SIGPLAN Symposium on Partial

Evaluation and Semantics-Based Program

Manipulation, pages 1–11, 1995.

[18] T. Reps. Program analysis via graph reachability.
Information and Software Technology,
40(11-12):701–726, 1998.

[19] T. Reps, S. Horwitz, and M. Sagiv. Precise
interprocedural dataflow analysis via graph
reachability. In ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages
49–61, 1995.

[20] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay.
Speeding up slicing. In ACM SIGSOFT International

Symposium on the Foundations of Software

Engineering, pages 11–20, 1994.

[21] A. Rountev, S. Kagan, and T. Marlowe.
Interprocedural dataflow analysis in the presence of
large libraries. In International Conference on
Compiler Construction, pages 2–16, 2006.

[22] A. Rountev and B. G. Ryder. Points-to and side-effect
analyses for programs built with precompiled libraries.
In International Conference on Compiler
Construction, pages 20–36, 2001.

[23] A. Rountev, M. Sharp, and G. Xu. IDE dataflow
analysis in the presence of large object-oriented
libraries. In International Conference on Compiler
Construction, pages 53–68, 2008.

[24] B. G. Ryder. Dimensions of precision in reference
analysis of object-oriented programming languages. In
International Conference on Compiler Construction,
pages 126–137, 2003.

[25] Y. Smaragdakis, M. Bravenboer, and O. Lhotak. Pick
your contexts well: understanding object-sensitivity.
In ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 17–30, 2011.

[26] M. Sridharan and R. Bodik. Refinement-based
context-sensitive points-to analysis for Java. In ACM
SIGPLAN Conference on Programming Language

Design and Implementation, pages 387–400, 2006.

[27] M. Sridharan, D. Gopan, L. Shan, and R. Bodik.
Demand-driven points-to analysis for Java. In ACM
SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications,
pages 59–76, 2005.

[28] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam,
P. Pominville, and V. Sundaresan. Optimizing Java
bytecode using the Soot framework: Is it feasible? In
International Conference on Compiler Construction,
pages 18–34, 2000.

[29] J. Whaley and M. Lam. Cloning-based
context-sensitive pointer alias analysis using binary
decision diagrams. In ACM SIGPLAN Conference on

Programming Language Design and Implementation,
pages 131–144, 2004.

[30] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In ACM SIGPLAN

Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 187–206, 1999.

[31] R. Wilson and M. Lam. Efficient context-sensitive
pointer analysis for C programs. In ACM SIGPLAN

Conference on Programming Language Design and

Implementation, pages 1–12, 1995.

[32] G. Xu, A. Rountev, and M. Sridharan. Scaling
CFL-reachability-based points-to analysis using
context-sensitive must-not-alias analysis. In European
Conference on Object-Oriented Programming, pages
98–122, 2009.

[33] X. Zheng and R. Rugina. Demand-driven alias
analysis for C. In ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages,
pages 197–208, 2008.

