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ABSTRACT

The computing industry has experienced fast and sustained growth in the com-

plexity of software functionality, structure, and behavior. Increased complexity has

led to new challenges in program analyses to understand software behavior, and in

particular to uncover performance inefficiencies. Performance inefficiencies can have

significant impact on software quality. When an application spends a substantial

amount of time performing redundant work, software performance and user experi-

ence can deteriorate. Some inefficiencies can use up certain types of resources and

lead to program crashes. In general, performance inefficiency is an important and

challenging problem for modern software systems. It is also a shared problem for

traditional and mobile object-oriented software. Static and dynamic analyses need to

keep up with this trend, and this often requires novel technical approaches.

One important symptom of performance inefficiencies is run-time bloat : exces-

sive memory usage and work to accomplish simple tasks. Bloat significantly affects

scalability and performance, and exposing it requires good diagnostic tools. As the

first contribution of this dissertation, we present a novel analysis that profiles the

run-time execution to help programmers uncover potential performance problems.

The key idea of the proposed approach is to track object references, starting from

object creation statements, through assignment statements, and eventually ending at

statements that perform useful operations. An abstract view of reference propagation
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is provided with path information specific to reference producers and their run-time

contexts. Several client analyses demonstrate the use of this abstract view to uncover

run-time inefficiencies.

Memory leaks, both for traditional and for mobile object-oriented software, present

a significant problem for software quality. Static memory leak detection is challenging

because it is extremely difficult to statically compute precise object liveness for large-

scale applications. We bypass this difficulty by leveraging a common leak pattern. In

many cases, severe leaks occur in loops where, in each iteration, some objects created

by the iteration are unnecessarily referenced by objects external to the loop. These

unnecessary references are never used in later loop iterations. Based on this insight,

we shift our focus from computing liveness, which is very difficult to achieve precisely

and efficiently for large programs, to the easier goal of identifying objects that flow

out of a loop but never flow back in. We formalize this analysis using a type and effect

system and present its key properties. This technique was applied on eight real-world

programs, such as Eclipse, Derby, and log4j. It not only identified known leaks, but

also discovered new ones whose causes were unknown beforehand, while exhibiting a

false positive rate suitable for practical use.

In addition to static analysis, performance testing is an effective approach to dis-

cover memory leaks. For example, sustained growth in memory usage during test

execution can indicate potential memory leaks. However, performance testing to ex-

pose leaks for arbitrary software is very difficult, because, similar to other dynamic

approaches, it also requires specific leak-triggering program inputs. As the third con-

tribution of this dissertation, we introduce LeakDroid, a novel and comprehensive

approach for systematic testing of resource leaks in Android applications. At the core
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of the proposed testing approach is model-based test generation that focuses specif-

ically on coverage criteria aimed at resource leak defects. These criteria are based

on the novel notion of neutral cycles : sequences of GUI events that should have a

“neutral” effect and should not lead to increases in resource usage. Several important

categories of neutral cycles are considered in the proposed test coverage criteria. As

demonstrated by experimental evaluation and case studies on eight Android applica-

tions, the proposed approach is very effective in exposing resource leaks.

Model-based test generation such as LeakDroid depends critically on GUI models,

which describe accessible GUI objects and corresponding user actions. GUI models

ultimately determine the possible flow of control and data in GUI-driven applications.

The ability to understand Android GUIs is critical for the reasoning of the semantics

of an Android application. We introduce the first static analysis to model GUI-related

Android objects, their flow through the application, and their interactions with each

other via the abstractions defined by the Android platform. We first develop a formal

semantics for the relevant Android constructs to provide a solid foundation for this

and other analyses. Based on the semantics, we define a constraint-based reference

analysis. The analysis employs a constraint graph to model the flow of GUI objects,

the hierarchical structure of these objects, and the effects of relevant Android opera-

tions. Experimental evaluation on real-world Android applications strongly suggests

that the analysis achieves high precision with low cost. The analysis enables static

modeling of control/data flow that is foundational for compiler analyses, instrumen-

tation for event/interaction profiling, static error checking, security analysis, test

generation, and automated debugging. It provides a key component to be used by

static analysis researchers in the growing area of Android software.
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GUI applications are usually organized as a series of GUI windows containing

structures of GUI widgets. User interaction with these windows (e.g., navigating

from one to another and then going back) drives the control flow of the application.

In Android, an activity plays the role of a GUI window, and transitions between ac-

tivities are managed with the help of an activity stack. To understand this additional

aspect of Android semantics, we introduce the first static analysis to model the An-

droid activity stack, the changes in this stack, and the related interactions between

activities. The analysis is an important step toward fully modeling the control/data

flow of an Android application. It can be leveraged by other researchers to prune

infeasible control flow paths in static analysis for Android, or to discover more paths

that would be missing without modeling of the activity stack.

In conclusion, this dissertation presents several dynamic and static program anal-

ysis techniques to understand the behavior of object-oriented software systems, to

uncover potential performance inefficiencies in them, and to locate the root causes of

these problems. The programs studied by these techniques are all written in Java,

but we believe the proposed techniques are general enough to also be applied to sys-

tems written in other object-oriented languages. With these techniques, we advocate

the insight that a carefully-selected subset of high-level behavioral patterns and pro-

gram semantics must be leveraged in order to perform practical program analyses for

modern software.
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CHAPTER 1: Introduction

Performance inefficiencies can have significant impact on software quality. When

an application spends a substantial amount of time performing redundant work, soft-

ware performance and user experience can deteriorate. Some inefficiencies can use

up certain types of resources and lead to program crashes. In general, performance

inefficiency is an important problem for modern software systems, and it is also a dif-

ficult challenge due to the increasing complexity of software functionality, structure,

and behavior.

Performance inefficiency is an even more important problem for mobile computing

platforms since they typically have much more limited resources. Due to performance

problems, user experience could degrade significantly, and the mobile application

could even be uninstalled by unsatisfied users. Android applications, as one important

example of applications for mobile devices, have a mixture of both the complexity of

object-oriented systems, and the constraint of limited resources. Therefore, software

engineering techniques and tools targeting their performance problems are greatly

needed.

1.1 Challenges

Challenges for compiler optimizations. While the symptoms of performance

inefficiencies could be easily observed through measurements of running time and

memory usage, the underlying causes for these problems could be very difficult to
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track down. It is not unusual to see performance problems resulting from inappropri-

ate design and implementation choices. Often, there does not exist a single hot spot

in the program for compiler optimizations to work on. In such cases, the removal

of performance inefficiencies requires insights of the programmer’s intention, which

usually cannot be fully captured by compilers. Thus, fully automatic optimization is

often not a feasible solution to these problems.

Challenges for application developers. Since compiler optimizations cannot

detect and eliminate all performance problems, developers often rely on manual tuning

techniques to incorporate human insight into the optimization process. However, as

software systems are increasingly relying on reusable libraries and frameworks, it

becomes much more difficult for application developers to fully understand the run-

time behavior of the whole system. When reusable components are not used properly,

or, worse yet, when they have bugs within themselves, performance problems are

extremely hard to detect without good tool support.

Challenges for performance testing. Performance testing is an approach

that evaluates the performance of software systems. It is widely applied for server

applications. Metrics such as throughput and response time are commonly accepted

for evaluation of server performance. However, GUI-based applications present new

challenges to performance testing. Most end-user applications are based on graphi-

cal interfaces; examples include desktop applications, web applications, and mobile

applications. To be able to perform systematic testing for these applications, a well-

defined model of the GUI is needed. Next, test cases that could expose performance

problems should be derived from this model. While many techniques have been pro-

posed to generate test cases to detect functional problems, there is little work on test
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case generation for detecting performance inefficiencies in GUI-based applications.

At present, it is difficult to cover a sufficient number of interesting code paths and

observe potential performance inefficiencies for GUI-based applications, one of the

most important types of software.

Challenges for static analysis. Static analysis is a key technique for modeling

the possible behaviors of a program, and can be used to both (1) drive the exploration

of run-time behaviors that aim to expose performance problems, and (2) statically de-

tect potential performance-related defects. For Android software, foundational static

analyses such as reference analysis and control-flow analysis are still not developed.

For example, a new reference analysis is needed for identifying GUI objects and their

corresponding event handlers, which in turn is essential for program understanding

and test generation. Similarly, control-flow analysis needs to account for new ab-

stractions introduced in Android (e.g., activities and the activity stack), in order to

allow effective exploration of dynamic behaviors, as well as precise static checking

of correctness/performance properties. The comprehensive and complicated libraries

provided by Android present new challenges to make static analysis efficient and pre-

cise. Analysis that is agnostic of the high-level platform semantics would inevitably

produce results that are too conservative to be useful for client analyses. Another

unique challenge for static analysis of Android applications is their component-based

nature. It is essential to model the interactions between Android components (e.g.,

activities) in order to perform general control-flow and data-flow analysis. These

static analysis challenges have not been addressed by existing work.
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1.2 Understanding the Behavior and Performance of Tradi-
tional and Mobile Object-Oriented Software

The goal of this dissertation is to develop several dynamic and static program

analysis techniques to understand the behavior of object-oriented software systems,

to uncover the (potential) performance inefficiencies in them, and to locate the root

causes of these problems.

Understanding object behaviors. One of the most difficult tasks during man-

ual performance tuning is to understand object behaviors—where and why objects are

created, how they flow through the heap, and where they are being used. Chapter 2

of this dissertation introduces a dynamic analysis technique, called reference propaga-

tion profiling, that profiles the run-time execution to track the propagation of object

references. The tracking starts from object creation statements, through assignment

statements, and eventually ends at statements where object references are used to

perform useful operations. This propagation is abstracted by a representation we re-

fer to as a reference propagation graph. This graph provides path information specific

to reference producers and their run-time contexts. Several client analyses demon-

strate the use of reference propagation profiling to uncover run-time inefficiencies. We

also present a study of the properties of reference propagation graphs produced by

profiling 36 Java programs. Several case studies discuss the inefficiencies identified

in some of the analyzed programs, as well as the significant improvements obtained

after code optimizations.

Static detection of memory leaks. Memory leaks, both for traditional and

for mobile object-oriented software, present a significant problem for software quality.

Dynamic analyses can be used to detect leaks, but they require specific leak-triggering
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program inputs, which are especially difficult to find during development and in-

house testing. To overcome this limitation and detect memory leaks before software

release, we develop a novel (and the first practical) static memory leak detection

technique for Java programs. This approach, called LeakChecker, is described in

Chapter 3. A long-standing issue that prevents the design of such a technique is that

it can be extremely difficult to statically compute precise object liveness for large-

scale applications. LeakChecker bypasses this difficulty by leveraging a common leak

pattern. In many cases, severe leaks occur in loops where, in each iteration, some

objects created by the iteration are unnecessarily referenced by objects external to

the loop. These unnecessary references are never used in later loop iterations. Based

on this insight, we shift our focus from computing liveness, which is very difficult to

achieve precisely and efficiently for large programs, to the easier goal of identifying

objects that flow out of a loop but never flow back in. We formalize this analysis

using a type and effect system and present its key properties. LeakChecker was used

to detect leaks in eight real-world programs, such as Eclipse, Derby, and log4j. It not

only identified known leaks, but also discovered new ones whose causes were unknown

beforehand, while exhibiting a false positive rate suitable for practical use.

Exposing leaking behaviors. In addition to static analysis, performance test-

ing is an effective approach to discover memory leaks. For example, sustained growth

in memory usage during test execution can indicate potential memory leaks. However,

performance testing to expose leaks for arbitrary software is very difficult, because,

similar to other dynamic approaches, it also requires specific leak-triggering program

inputs. As the third contribution of this dissertation, we introduce LeakDroid, a novel
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and comprehensive approach for systematic testing of resource leaks in Android ap-

plications (Chapter 4). An Android application is driven by a graphical user interface

(GUI), with GUI objects responding to user actions. A GUI model describes for each

moment of time the GUI objects users can interact with, and correspondingly the

possible user actions. At the core of the proposed testing approach is model-based

test generation that focuses specifically on coverage criteria aimed at resource leak

defects. These criteria are based on the novel notion of neutral cycles : sequences

of GUI events that should have a “neutral” effect and should not lead to increases

in resource usage. Several important categories of neutral cycles are considered in

the proposed test coverage criteria. Experimental evaluation and case studies were

performed on eight Android applications. The approach exposed 18 resource leak

defects, 12 of which were previously unknown. These results provide motivation for

future work on analysis, testing, and prevention of resource leaks in Android software.

The implemented testing tool and the experimental subjects used in this work have

been made available online in the LeakDroid release page.1

Understanding GUI-driven Android applications. The key components of

a GUI-driven application are GUI objects and the associated event handlers. They

ultimately determine the possible flow of control and data in these applications. As

discussed earlier, Android applications are GUI-driven. The ability to understand

Android GUIs is critical for the reasoning of the semantics of an Android applica-

tion. Furthermore, automated test generation (e.g., for the coverage criteria defined

in LeakDroid) depends critically on GUI models. In Chapter 5, we introduce the

first static analysis to model GUI-related Android objects, their flow through the

1http://www.cse.ohio-state.edu/presto/software
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application, and their interactions with each other via the abstractions defined by

the Android platform. The proposed analysis falls into the category of a static ob-

ject reference analysis, which models the flow of object references. Existing reference

analyses for traditional Java applications cannot be applied directly because Android

applications are component-based and event-driven. We first develop a formal se-

mantics for the relevant Android constructs to provide a solid foundation for this and

other analyses. Based on the semantics, we define a constraint-based reference anal-

ysis. The analysis employs a constraint graph to model the flow of GUI objects, the

hierarchical structure of these objects, and the effects of relevant Android operations.

Experimental evaluation on real-world Android applications strongly suggests that

the analysis achieves high precision with low cost. The analysis enables static mod-

eling of control/data flow that is foundational for compiler analyses, instrumentation

for event/interaction profiling, static error checking, security analysis, test generation,

and automated debugging. It provides a key component to be used by static analysis

researchers in the growing area of Android software.

Understanding control flow in Android applications. GUI applications are

usually organized as a series of GUI windows containing structures of GUI widgets.

User interaction with these windows (e.g., navigating from one to another and then

going back) drives the control flow of the application. In Android, an activity plays

the role of a GUI window, and transitions between activities are managed by an ac-

tivity stack. In Chapter 6, we introduce the first static analysis to model the Android

activity stack, the changes in this stack, and the related interactions between activi-

ties. We extend the formal semantics developed in Chapter 5 to include abstractions

to represent the state and changes of the activity stack. Based on the semantics,
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we encode relevant Android constructs in an activity transition graph and perform

traversal on this graph to compute the set of possible activity stack states. The

output of the analysis is encoded in a stack transition graph, whose nodes represent

stacks and edges represent abstract operations to trigger the transition between two

stacks. The analysis is an important step toward fully modeling the control/data

flow of an Android application. It can be leveraged by other researchers to prune

infeasible control flow paths in static analysis for Android, or to discover more paths

that would be missing without modeling of the activity stack.

1.3 Outline

The rest of this dissertation is organized as follows. Chapters 2–6 present the

novel program analysis techniques contributed by this dissertation. Related work is

described in Chapter 7. Chapter 8 summarizes this dissertation’s contributions.
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CHAPTER 2: Reference Propagation Profiling to Uncover
Performance Inefficiencies

Many applications suffer from chronic run-time bloat—excessive memory usage

and run-time work to accomplish simple tasks—that significantly affects scalability

and performance. This is a serious problem for software systems, yet their complexity

and performance are not well understood by application developers and software re-

searchers. Some run-time inefficiencies are even a result of adapting common practices

(such as creating APIs for general use, and favoring method reuse without special-

ization). The conclusion from detailed analysis of dozens of real-world applications

is that great amounts of work and memory resources are often needed to accom-

plish very simple tasks [73]. A few redundant objects, calls, and assignments may

seem insignificant, but the inefficiencies easily get magnified when the inefficient code

is frequently reused, causing significant system slowdowns and soaking up excessive

memory resources.

While a modern compiler (such as the just-in-time compiler in a virtual machine)

offers sophisticated optimizations, they often are of very limited help in removing

bloat. This is because dataflow analyses in a compiler often have small scopes (i.e.,

they are intraprocedural), which makes it impossible to tackle problems that can

cross dozens of calls and even multiple frameworks. In addition, compiler analyses

are generally unaware of the domain semantics of the program, while bottlenecks

often result from inappropriate design/implementation choices. Finding and fixing
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these performance problems requires human insight, and thus it is highly desirable to

develop diagnostic tools that can expose performance bottlenecks to the developers.

In this chapter, we present a novel tool that profiles the execution to help pro-

grammers uncover potential performance problems. The key idea of the proposed

approach is to track object references, starting from their producers (object creation

statements), through assignment statements that propagate the references, eventually

reaching statements that use the corresponding objects to perform useful operations.

This run-time propagation is abstracted by a representation we refer to as a reference

propagation graph. This graph contains nodes that represent statements, and edges

that correspond to the flow of references between them. The edges are annotated with

run-time frequencies. We have designed several client analyses that identify common

patterns of bloat by analyzing various graph properties. An initial description of

these contributions appeared in [120].

2.1 Motivation

The motivation for the proposed reference profiling analysis is threefold. First, the

creation and manipulation of objects is at the core of modern object-oriented appli-

cations. In cases where the object behavior exhibits suspicious symptoms (e.g., many

objects are created by a statement, but only few of them are ever used), it is natural

to investigate such symptoms. Second, the specific abstraction of run-time behavior—

the reference propagation graph—provides enough information to relate the profiling

information back to the relevant source code entities; this makes it easier for a tool

user to understand the problematic behavior. Furthermore, the representation main-

tains separate propagation paths for different sources of object references, and for
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different contexts of the producers of these references, which allows precise identifi-

cation of problematic paths. Finally, it is important not only to identify potential

performance issues, but also to provide guidance on how to focus the efforts to fix

them. Our approach characterizes the complexity of interprocedural propagation, as

well as of interactions with heap data structures, in order to identify the problems

that are likely to be easier to explain and eliminate.

Performance inefficiency often comes from extraneous work performed to accom-

plish a task. One symptom of such inefficiency is the imbalance between the cost

of constructing and propagating an object, and the benefit the object can bring to

the progress of the application. For example, an object may be propagated to many

parts of the code, but only a subset of this affected code actually benefits from having

access to the object.

To characterize such imbalance, and to use it to detect potential performance

problems, we track three types of run-time events: object allocation, reference assign-

ment, and object usage. In Java, an object is always accessed through references. Such

references can be propagated through either stack locations or heap locations. As a

form of stack propagation, references can also cross method boundaries via parameter

passing or method returns. By writing such references to fields of other objects, they

can become accessible to large portions of the application’s code.

Such propagation greatly increases the difficulty of manually tracking and under-

standing the behavior of the object of interest. An automatic reference propagation

profiling tool can provide significant value and insights needed for performance tun-

ing, especially for complex Java applications. The rest of this section demonstrates

through an example how reference propagation profiling can be useful in uncovering
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1 class Vector {

2 double x, y;

3 Vector sub(Vector v) {

4 Vector res = new Vector(x - v.x, y - v.y);

5 return res;

6 }

7 void sub_rev(Vector v, Vector res) {

8 res.x = this.x - v.x;

9 res.y = this.y - v.y;

10 }

11 Vector copy() {

12 return new Vector(x, y);

13 }

14 }

15 Vector[][] a = ...; // input data

16 Vector[][] d = ...; // intermediate result

17 Vector temp = new Vector();

18 // m, n are typically large numbers

19 int m = readInput();

20 int n = readInput();

21 void compute() {

22 for (i = 1; i < m; i++) {

23 for (j = 1; j < n; j++) {

24 if (cond1) {

25 temp = a[i+2][j].sub(a[i-1][j]);

26 } else {

27 temp = new Vector(...);

28 }

29 ... // read/write fields of temp

30 d[i][j] = temp;

31 if (cond2) {

32 temp = a[i+1][j].sub(a[i-2][j]);

33 } else {

34 temp = new Vector(...);

35 }

36 d[i][j].x += temp.x;

37 d[i][j].y += temp.y;

38 }}

39 }

40 static void main(String[] args) {

41 compute();

42 ... // access the fields of d[i][j]

43 }

Figure 2.1: Running example.

performance inefficiencies. The next section describes the formulation and implemen-

tation of this dynamic analysis.

Motivating Example. Figure 2.1 shows a code example simplified and adapted

from the euler program of the JavaGrande benchmark suite [54]. Class Vector

represents coordinates in a 2D space. Its sub method subtracts one Vector from

another, and returns the result in a newly-created Vector (line 4). The method

would be invoked many times during a typical execution. A very large number of

objects of type Vector would be allocated, since the loops in lines 22–38 would be

executed many times. The cost of calls to sub (lines 25 and 32) and the object

allocations inside sub (line 4) is very high. However, not all of this work is necessary.

Note that the object is created solely for the purpose of storing the result of the

subtraction. Once the result is retrieved from the object, that object becomes useless

and would be deallocated by the garbage collector.
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We can reuse a single Vector object across multiple calls to sub. A variant of

sub called sub rev is shown at lines 7–10. The new method has an extra parameter

to store the result of the subtraction, and the caller of this method is responsible

for allocating the object. In this way, the caller would have the flexibility to reuse

the object across multiple invocations of sub rev. Specifically, the object returned

at the call to sub at line 32 is immediately read (lines 36–37) and discarded. A call

to sub rev at line 32, with reuse of a single temporary object allocated before the

i loop, will eliminate the cost of frequent allocation and garbage collection for these

short-lived objects.

In cases when the resulting Vector is assigned to the heap (line 30) and becomes

part of a global data structure, we need to investigate how this heap data structure

(d[i][j] in this example) is being used. This is necessary to determine whether it is

safe to perform the code transformation. We need to track how the object propagates

in the memory space through references. For example, the object created at line 4

is propagated through the references res, temp, and then d[i][j]. After the object

is assigned to d[i][j], which is a heap location, we need to know whether it is ever

read back from the heap. If it is not, we can safely reuse the object; if it is, meaning

that there exists an assignment such as v=d[i][j], we have to continue tracking how

the local variable v is used. In this example, the object is indeed read back from the

heap (line 42). Thus, the call at line 25 cannot be replaced with a call to sub rev.

As described later, the reference propagation profiling can provide insights into the

behavior of the objects created at line 4. In the actual euler benchmark, we observed

that a large number of objects created at this allocation site are propagated through

the call at line 32, but not any further. In the analysis results, this propagation path
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is clearly distinguished from the path through the call at line 25, for which there

do not exist easy performance optimizations. With the code transformation outlined

above, we observed a reduction of 13.3% in running time and 73.3% in number of

allocated objects for this benchmark.

Similarly to other dynamic analysis techniques, the conclusions drawn from the

propagation graph depend on the quality of the run-time information. In our ex-

periments we run well-defined benchmarks on representative inputs that come with

them. In practical use, such representative inputs are necessary for this (or any other)

profiling analysis.

2.2 Reference Propagation Profiling

Reference Propagation Graph. The propagation of (references to) an object

during its lifetime is encoded as a reference propagation graph. For illustration, the

graph for the example from the previous section is shown in Figure 2.2.

There are three types of nodes in the graph. A producer node represents object

allocations. Each producer node has (1) an allocation site ID which encodes the static

location of the allocation expression in the source code, and (2) context information

obtained when this allocation occurs at run time. The degree of context sensitivity

can be tuned as a parameter of the analysis. A reference assignment node represents

the assignment statements that propagate the objects through references. We distin-

guish stack-only propagation (at object allocations, between local variables, or due

to parameter passing and return values), and propagation between heap and stack

(caused by reading or writing instance fields, static fields, or array elements). The

nodes are uniquely determined by their static location in the code, and the producer
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node that reaches them—that is, a single statement in the code can be represented

by multiple graph nodes, one per producer of object references. A single consumer

node represents the usage of objects. If a producer node reaches this node through a

certain path, some objects propagated through that path are used. An object is used

when (1) it is the receiver of a method call, (2) a field of the object is read or written,

(3) it is used as a parameter in a call to a native method, or (4) it is an operand of

instanceof, ==, !=, or casting.

There are three types of edges in the graph. An alloc-assign edge, between a

producer node and a reference assignment node, corresponds to object allocations

ref = new X. A def-use edge, connecting two reference assignment nodes, represents

the def-use relationship between two reference assignment statements such as ref =

. . . and . . . = ref . A usage edge, from a reference assignment node to the consumer

node, indicates a def-use relationship between an assignment ref = . . . and another

statement in which the value of ref is used (as described above).

Example. The subgraph related to the allocation at line 4 for the example in

Figure 2.1 is shown in Figure 2.2. In this example, a context-insensitive scheme is used

to model run-time objects. (Context sensitivity will be discussed later in this section.)

Thus, the objects created at line 4 are abstracted solely with the line number, and a

node Producer(4) is added to the graph. Immediately after the allocation, the object

is assigned to local variable res, so there is a node RefAssign(4,4) and an alloc-assign

edge to it. This node is then connected, via a def-use edge, to RefAssign(4,25), which

represents the return value of the call at line 25. Here the first label on the node is the

ID of the producer node (4) that created the propagated object, and the second label
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RefAssign(4,4)

RefAssign(4,25)

1625600

RefAssign(4,32)

1587200
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1625600

Consumer

1625600

Producer(4)

3212800

3252000 3174400

Alloc-Assign Edge

Def-Use Edge

Usage Edge

RefAssign(4,42)

1625600

Figure 2.2: Reference propagation graph for the running example.

is the line number (25) of the actual statement that does the propagation. Similarly,

RefAssign(4,32) and an edge to it are created due to the call at line 32.

In subsequent statements, fields of the object are accessed (lines 29 and 36–37);

thus, the two reference assignment nodes are connected to the consumer node. The

objects that are propagated along the path through line 25 are later assigned to the

heap at line 30 and retrieved back at line 42, so the path is extended accordingly. Such

an extension is not performed for the path via 32, since there is no further propagation

along that path. The graph is annotated with run-time frequency information for

graph edges, similar to the frequencies observed in the actual euler benchmark.

This graph provides the foundation for reference propagation profiling. Each edge

in the graph is associated with a counter. Whenever a statement is executed at run
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time, the counter of the corresponding edge is incremented. Both the structure of the

graph as well as the edge weights can be used to identify execution inefficiencies. For

example, with this graph, it becomes significantly easier to understand the behavior

of run-time objects created at line 4 of Figure 2.1. First, all paths starting from the

producer node contain nodes that go to the consumer node, so it is not possible to

simply remove the allocation. In other words, we have to explicitly create the object

(or, perhaps, use some form of object inlining [31]). Second, the path through line 32

is very short, does not contain writes to the heap (i.e., the object does not become

part of larger heap data structures), and represents a significant volume of reference

propagation. Thus, it presents an interesting target for performance analysis and

optimization. Third, the path through line 25 is longer, spans three methods, involves

propagation through the heap, and therefore is likely to be harder to understand and

optimize.

Producer-Specific and Context-Specific Propagation. Each reference as-

signment node is specific to a particular producer node. For example, the statement

at line 30 in the example is represented by RefAssign(4,30), corresponding to the

flow of references produced at line 4. This same statement can also propagate the

references produced at line 27. A separate node RefAssign(27,30) would represent

this propagation. Similarly, line 42 would correspond to two separate nodes, one

for each producer. Such per-producer representation allows better precision when

characterizing the flow of references. For example, consider the flow from line 30 to

line 42. If this flow is not distinguished based on the producer, a single frequency

would be associated with this pair of statements, making it impossible to attribute

the behavior to individual sources of run-time objects.
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A producer node is an abstraction of a set of run-time objects, and the choice of

this abstraction is an important parameter of the analysis. The simplest abstraction is

to use the ID of the allocation site that created the object. However, it is well known

that this abstraction can be refined by considering the context of the allocation. There

are various definitions of context, and they can be easily incorporated in our analysis.

For the current implementation, we employ the so called object-sensitive abstraction.

In this approach, a producer node corresponds to a pair (s1, s2) of allocation site IDs.

The first ID s1 is for the site that creates the object. That site is in some method, and

the receiver object of that method (i.e., the object to which this refers to when s1 is

executed) is the context of the allocation. Thus, s2 is the ID of the allocation site that

created this receiver. This technique is appropriate for modeling of object-oriented

data structures [72] and is currently used in our implementation. The generalization

in which a node is a tuple (s1, . . . , sk+1) (i.e., k-object-sensitivity [72]) can also be

easily applied.

Intended Uses. The graph described above can provide useful information for

efficient manual investigation of application code. The patterns of reference propaga-

tion, across method calls/returns and heap reads/writes, are easy to discern from the

structure of the graph. Direct connection with relevant source code locations can be

visualized inside a code browsing tool. The frequency information provides insights

into the amount of work related to reference propagation, and helps identify hotspots

in this propagation.

The graph can also serve as the foundation for a number of client analyses (Sec-

tion 2.4). The key feature of these approaches is that they automatically identify
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“suspicious” allocation sites, based on properties of the propagation graph. Fur-

thermore, the graph can provide a characterization of the complexity of propagation

patterns and the required program transformations. As a result, programmers or per-

formance tuning experts can focus on parts of the code that not only exhibit run-time

inefficiencies, but are also likely to be relatively easy to understand and transform.

Certain aspects of the proposed analysis are similar to information flow analysis

(e.g., [16,17,22,23,46,65,78,78,80,88,119]). However, we record and report not only

the source of the transitive run-time dependence, but also the intermediate statements

along the dependence chain, as well as (an abstraction of) the actual reference value

being propagated. Furthermore, the execution frequencies are collected per-producer-

node, which allows unrelated flows through the same statement to be separated.

2.3 Analysis Implementation

The analysis is implemented in the Jikes RVM (Research Virtual Machine) version

3.1.1 [56]. The instrumentation is implemented in the optimizing compiler in Jikes.

During execution, only this compiler is used, and every method is compiled with it

before being executed for the first time.

Shadow Locations. Each memory location containing reference values is asso-

ciated with a shadow location [79]. Local variables in the compiler IR are represented

as symbolic registers. To create shadows for locals, we assign an ID to each symbolic

register at “compile time” (actually, at run time when the optimizing compiler is

compiling the method), and associate that ID with graph nodes created as the pro-

gram executes. Shadows of static fields are stored in a global table, and indices into

the table are determined by the class loader. Shadows of instance fields are stored
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in place with originally declared fields, and accessed by offsets from the base objects.

The offsets are also determined during class loading. Array elements are shadowed

similarly to static fields, except that per-array tables are used.

In cases when an object is moved by a copying garbage collector, its corresponding

shadows should also be moved. This can be done by modifying the garbage collector,

but we choose to use a non-moving GC for ease of implementation. This decision

does not affect the results of the analysis.

Abstractions for Run-time Entities. The reference propagation graph con-

struction has two components: (1) “compile-time” instrumentation, which happens

in the optimizing compiler at run time, and (2) run-time profiling, which builds the

graph as the program executes. The instrumentation tags each object with its alloca-

tion site information. Specifically, we write an allocation site ID to the header of each

object, and the ID can be used to look up the source code location of the allocation

site. For a context-sensitive setting, the context information is also recorded in the

header. For example, when we use the object-sensitivity representation, the alloca-

tion site ID of the receiver object is written to the object header as well. To introduce

approximations and tune the overhead, we map the allocation site IDs id of receiver

objects into c equivalence classes using a simple mapping function f(id , c) = id % c,

where c is a pre-defined value. To achieve full precision (i.e., no approximations), c

can be set to the number of allocation site IDs, in which case every equivalence class

is a singleton.

Besides allocation site information, we also reserve one extra word in the object

header for uses specific to client analyses. For example, such analyses can use one bit

to mark whether an interesting event occurs on the object (e.g., whether the object
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is ever assigned to the heap). Section 2.4 discusses how this can be useful for im-

plementing client analyses. The source information of executed reference assignment

statements is maintained in a similar way.

Run-time Event Tracking. Each run-time object has a producer node associ-

ated with it. To enable fast lookups, producer nodes are stored in a table prods , and

can be accessed with an index i, a combination of the allocation site IDs of the object,

and the receiver object of the surrounding method (a default value 0 is used for a

context-insensitive setting). Suppose the two IDs are allocId and recvId , and c equiv-

alence classes are used in the object-sensitivity encoding. The index i is computed as

i = allocId × c + recvId%c. Thus, each pair (allocId , recvId) is mapped to an index

ranging from 0 to the number of allocation sites multiplied by c. When an object is

created, we first look up the table to see whether there is already a producer node at

prods [i]. If there is one, we increase the frequency of the existing node; otherwise, we

create a new producer node, remember it in prods [i], and write the IDs to the header

of the newly-created object. In addition, we create a reference assignment node to

be the shadow of the variable getting the new object, and connect the producer node

with it. If the producer node already exists, the frequency of the edge is incremented.

For a reference assignment lhs = rhs, we (1) create a new reference assignment

node, (2) remember the node in the shadow of lhs, and (3) connect the node stored

in the shadow of rhs to it. When the edge between the two nodes already exists, its

frequency is incremented instead. Parameter passing and method returns are treated

as special forms of reference assignments. To pass the shadow information into and

retrieve it back from callees, we maintain a per-thread scratch space to temporarily

store shadows of parameters and return variables.
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As described in Section 2.2, an object can be used at certain statements. For

example, when a heap access v.fld = . . . or . . . = v.fld is executed, we create a usage

edge between the node stored in the shadow of v, and the consumer node. If such an

edge already exists, its frequency is incremented.

2.4 Client Analyses

This section describes several client analyses built on top of the reference propa-

gation profiling described earlier. These analyses examine the reference propagation

graph and report to programmers a ranked list of suspicious producer nodes that

should be examined for performance tuning. The criterion as to what producers are

suspicious is defined by individual client analyses. The reported producer nodes are

ranked based on the number of times they are instantiated.

In addition, for each reported node, several metrics are computed and provided in

the analysis output. The role of these metrics is to estimate the ease with which the

propagation starting from this producer can be understood and optimized. Specifi-

cally, all reference assignment nodes reachable from a reported suspicious producer

node are examined. The number of such reachable nodes that correspond to calls

and returns is an indication of how widely the references are propagated throughout

the calling structure. The higher this number, the more complex the interprocedu-

ral propagation, which means that code transformations are likely to be difficult (or

impossible). Another metric is the number of reachable nodes that represent heap

reads and writes. A large number of such nodes indicates that the objects created by

the producer node interact in complex ways with heap data structures, which makes

their understanding and transformation more challenging.
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Not-Assigned-To-Heap (NATH) and Mostly-NATH Analysis. The NATH

client analysis detects allocation sites that create many objects, but none of these ob-

jects are stored into the heap (i.e., no instance field, static field, or array element

ever contains a reference to them). These sites are promising for tuning because the

objects created at these sites may be roots of temporary data structures that are ex-

pensive to construct. In addition, these objects are typically short-lived, potentially

leading to frequent garbage collection. The escape analysis performed by a JIT com-

piler usually cannot identify such redundancies, because many such objects do escape

the methods that created them. Using the propagation graph, this analysis finds and

reports all producer nodes that never reach reference assignment nodes corresponding

to assignments from the stack to the heap.

If most of the objects created by a site are NATH, that site is still a good candidate

for tuning. We refer to such sites as “mostly-NATH”. For example, Line 4 in Figure 2.1

is a mostly-NATH site, and refactoring it brings significant performance improvements

for the euler benchmark. Implementing this analysis requires a small extension to

tag each object with an assigned-to-heap bit, and store a counter of assigned-to-

heap objects in the producer node. The analysis reports any producer node for

which the percent of NATH objects exceeded a given threshold. When such sites

are reported, the propagation graph can be used to determine the specific paths in

the code along which these objects are assigned to the heap (e.g., the path through

line 25 in Figure 2.2). This information provides insights into the run-time object

propagation, and eases the task of refactoring the NATH paths (i.e., the paths through

which objects are not assigned to the heap).
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Analysis of Cost-Benefit Imbalance. In cases when run-time cost is signifi-

cantly higher than benefits, there could be some redundancies; in terms of objects,

there may be excessive allocation or propagation. In general, it is inefficient to allo-

cate a lot of objects but seldom use them. Also, it is suspicious to write an object

to the heap significantly more times than it is being read back. This client analy-

sis is a framework to detect such imbalances between cost and benefit, and can be

instantiated with different definitions of cost and benefit. For example, we can con-

sider writing an object to the heap as cost (because the object had to be created

and propagated), and reading it back as benefit (since the object was needed by some

method). If the ratio between these two is very high (write-read-imbalance), it is pos-

sible that we do not need that many objects, or the way the program organizes data is

problematic. To implement this analysis, we can analyze the reference propagation

graph. For a producer node, the cost is the sum of node frequencies for the reachable

stack-to-heap reference assignment nodes, and the benefit is defined similarly for the

heap-to-stack ones. The analysis reports all producer nodes for which this ratio is

greater than a certain threshold value.

Analysis of Never-Used and Rarely-Used Allocations. One can identify

never-used object allocations by finding the producer nodes that cannot reach the

consumer node; the next section provides several examples of this situation. Or,

similarly to the mostly-NATH analysis, one can develop an analysis of rarely-used

allocations : allocation sites that instantiate many objects, but only a small percentage

of these objects are used. As discussed later, our experimental results indicate that

never-used objects and never-used allocation sites occur surprisingly often.
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Other Potential Uses. There are other performance analyses that can make

use of reference propagation profiling. For example, such profiling can be used to

study container-related inefficiencies. The write-read-imbalance objects, those that

are written to the heap significantly more times than they are read back, are often

written to a heap location which is part of a container data structure. We can locate

low-utility containers (many elements are added but only a few are retrieved) by

tracking the heap locations to which those imbalanced objects are written. This can

be done through inspection of the source code, aided by the path information in the

reference propagation graph.

2.5 Case Studies

To evaluate the effectiveness of reference propagation profiling, we performed sev-

eral case studies on Java applications from prior work [93,116,118], and found several

interesting examples of performance inefficiencies. All problems uncovered in these

case studies are completely new and have never been reported before. It took us

about two days to locate and fix these problems. All programs were new to us. Most

of the time was spent on producing a correct fix rather than locating problematic

data structures. Such manual tuning is commonly used in practice [73], and without

tool support it can be very labor-intensive.

mst This program, from a Java version [64] of the Olden benchmarks, solves the

minimum spanning tree (MST) problem [27]. The tool report shows that for an input

graph with 1024 nodes, 1047552 objects of type Integer are created; the same number

of instances is also reported for type HashEntry. All of these objects are assigned

to the heap, but only half of the Integer objects are read back. The large volume
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of object allocation and the significant cost-benefit imbalance (recall Section 2.4)

are highly suspicious. We inspected the code and found that the program uses an

adjacency list representation. For each node in the graph, it uses a hash table to

store the distances to its adjacent nodes. The distance is represented by an Integer

object. Thus, for each distance value, it has to create a new Integer object. For a

graph with 1024 nodes, it creates 1024 hash tables (the tool shows that 1024 arrays

of HashEntry are created, which corresponds to the 1024 hash tables), and each table

has 1023 entries, storing the distances to the other 1023 nodes. So, the program needs

1047552 = 1024 × 1023 objects of type Integer, and similarly for type HashEntry.

In addition, the input graphs used by the benchmark are all complete graphs (i.e.,

each node is connected to each other node).

In general, an adjacency matrix is the preferred representation for dense graphs.

Also, for undirected graphs, the distance from node n1 to n2 is the same as that from

n2 to n1, so the way this program stores distances has unnecessary space overheads,

which is exactly why only half of the Integer objects are read back from the heap,

rendering the other half redundant. To confirm our understating on the tool report

without too much refactoring effort, we kept the adjacency list representation, and

only slightly changed the code to store and look up distances in an undirected manner.

Specifically, for nodes n1 and n2, we do not add n1 to the adjacent list of n2 anymore,

and when we need the distance between them, we look up the adjacency list of n1, the

one with a smaller node ID. This simple change alone reduced running time by 62.5%,

and object creation by 39.6% (measured with input graphs of 1024 nodes, and large

enough heap sizes). For a fixed heap size of 128MB, the original version can only

finish its execution with graphs of at most 1731 nodes, while the modified version
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can handle 2418 nodes, an input size 39.7% larger. If we refactor the code more

aggressively and use an adjacency matrix representation instead, the performance

improvement could potentially be even higher.

euler This program is from the Java Grande benchmark suite [54]. The tool

shows that the svect method of the Statevector class creates a large number of

Statevector objects, while only a small percentage of them are assigned to the

heap. After inspecting the code, we found that the program creates temporary ob-

jects to serve as the return value of the svect method. Once the method finishes

its execution, the caller would retrieve the computation result. Afterward, some of

the returned objects are stored in an array to be used later, but most of them are

not (recall the running example from Figure 2.1). Method svect is invoked inside

nested loops that iterate many times, so it is very likely that it will degrade the

performance significantly. To solve this problem, we modify the code to make svect

share one common Statevector object to store the result, and make a copy of the

objects only when they are to be assigned to the heap. By changing this site alone,

we achieved performance improvement of 13.3% in running time and 73.3% in the

number of allocated objects.

jflex In the report generated from running JFlex, we found that a large number of

String and StringBuffer objects are created in the toString method of a variety

of classes. Most of the String objects created at these sites are ultimately used to

construct the parameter of the static method Out.debug which prints out debug-

ging messages when certain debugging flag is turned on. The debugging message is

constructed even when the debugging flag is turned off, making the String objects

redundant. This is confirmed by our report that the String objects created at call
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sites of the Out.debug method are never used. To eliminate such redundancies, we

change the code to manually inline the calls to Out.debug so that no debugging mes-

sages would be constructed when the debugging flag is turned off. This modification

reduced the running time by 2.9% and the number of created objects by 26.9%.

bloat The analysis of this DaCapo benchmark [28] shows that there is excessive

object allocation in method entrySet of class NodeMap. The program uses NodeMap,

an inner class of Graph, to ensure there are no duplicate nodes in the graph, and the

NodeMap uses a HashMap for the underlying storage. To implement entrySet, one can

simply return the entry set of the underlying HashMap. However, the program instead

returns a newly-created instance of a specialized AbstractSet implementation which

incorporates sanity checks whenever element removal is to be performed. Specifically,

it adds sanity checks to the remove and removeAll methods of the set object. In

addition, in the set implementation, it has a specialized Iterator implementation

which has similar checks in its remove method. These objects are not assigned to the

heap, and present an opportunity for optimizations.

The specializations introduced by these objects are useful for debugging purposes.

They are needed during the development phase, but redundant after the correctness

of the program has been established. To eliminate the redundancy, we removed the

checks and used the entry set of the underlying HashMap as the return value instead.

After the refactoring, we achieved reduction of 10.4% in running time and 11.3% in

the number of allocated objects.

chart As shown in the next section, 67.2% of the allocation sites in the chart

DaCapo benchmark are never-used, meaning that all objects created at such sites are

never used. When we examined these sites, we found that the most significant source
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of never-used objects was a site that creates a large number of SeriesChangeEvent

objects, but none of them are used. The program creates these objects to notify

the listeners that the data series has been changed, and they only contain one single

field to represent the source of the event. Since there is no concurrent access to

the listener-notification method, we can share one common SeriesChangeEvent and

update its event source field whenever it is about to be passed to listeners. After this

code transformation, we achieved a reduction of 7.7% in running time and 7.8% in

the number of allocated objects.

2.6 Properties of Propagation Graphs

This section presents measurements that provide insights into the properties of

reference propagation graphs. The measurements are based on a set of 36 programs

used in prior work [93, 116, 118], including benchmarks from SPEC JVM98 [101],

Java Grande v2.0 (Section 3) [54], a Java version [64] of the Olden benchmarks, and

DaCapo 2006-MR2 [28]. The experimental results were obtained on a machine with

a 3.4GHz Quad Core Intel i7-2600 processor.

As with similar work on dynamic analysis, a threat to external validity comes from

the choice of analyzed programs and their test inputs. We have tried to ameliorate

this problem by using a large number of programs from diverse sources, and the

representative inputs included with them.

The running time overhead of the analysis is typically around 30–50×. Such over-

heads are common for similar performance analyses from existing work, and are also

acceptable for performance tuning and debugging tasks (rather than for production

runs). In our case, the overhead is high because we have to track all instructions
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Program Classes Methods
Alloc NATH Never-Used WRI Sites Call/ Write/
Sites Sites Objs Sites Objs t = 2 t =∞ Ret Read

compress 18 67 22 9 109 0 0 1 1 5.14 3.41
db 9 52 31 16 122 1 30236 1 1 6.87 4.48

jack 53 294 264 107 457449 12 34104 6 5 8.16 7.09
javac 146 779 409 88 1141931 24 254718 41 18 26.69 29.98
jess 140 445 206 36 3359830 6 2087 53 53 8.79 5.93

mpegaudio 49 225 104 7 7 5 212 16 16 5.54 5.13
mtrt 34 196 137 52 4577717 23 465747 4 1 17.6 6.26

search 6 25 3 3 3 0 0 0 0 9.67 0
euler 5 25 19 11 4789005 2 19630 1 1 3.53 18.89

moldyn 5 22 6 2 2 0 0 0 0 5.33 17
montecarlo 14 96 23 15 365202 0 0 0 0 9.48 2.04
JGraytracer 13 55 44 18 51238212 11 4753813 5 5 4.23 3.73

bh 7 49 12 5 126422990 0 0 0 0 15.17 11.33
bisort 3 14 2 1 2 0 0 0 0 14 8.5
em3d 6 16 8 2 2 0 0 0 0 5.88 4.38
health 6 18 17 8 2571333 1 21895 1 1 4.41 2.35
mst 7 31 10 4 1026 0 675444 1 0 6.8 4.8

perimeter 11 42 10 3 3 0 0 0 0 13.8 5.5
power 7 31 16 4 21 0 0 0 0 5.31 3.75

treeadd 3 5 5 3 3 0 0 0 0 4.4 1.2
tsp 3 14 3 1 1 0 4 0 0 9 34.33

voronoi 7 43 12 6 196609 0 0 0 0 19.75 5.75
antlr 109 1256 1151 796 482074 115 152949 89 66 9.05 5.03
bloat 230 1639 969 508 9439879 46 113786 40 25 28.84 10.63
chart 285 1418 1926 732 1174156 1295 578854 243 237 2.96 2.1

eclipse 1210 9558 3694 1485 1802921 688 1678586 363 285 13.08 10.04
fop 663 2661 1246 484 243275 535 42110 109 95 6.34 3.32

hsqldb 112 1012 461 243 67745 60 29735 26 20 7.02 3.66
jython 622 2775 3328 457 5579384 269 807139 1725 1368 11.36 4.82
luindex 96 529 258 141 2167954 46 17888 8 5 6.78 4
lusearch 100 508 228 89 2280855 43 2119431 16 12 7.93 4.09

pmd 377 2175 669 232 11382153 150 2187057 87 65 17.24 7.25
xalan 343 2133 778 149 367534 141 233745 151 134 14.29 7.49
JFlex 35 264 286 74 990370 70 20325 65 65 7.06 4.56

jbb2000 56 476 512 385 7693562 70 10070051 16 12 7.21 3.47
jbb2005 73 601 566 378 916103 69 1642515 22 17 6.95 2.31

Table 2.1: Properties of the context-insensitive reference propagation graphs.

involving reference values. The typical memory usage overhead is around 2–3×. Still,

we were able to use the tool to study real-world programs, including large applications

such as eclipse, and to uncover interesting performance inefficiencies in them. An

intriguing possibility for future work is to consider how to reduce the overhead. For

example, static analysis can rule out certain uninteresting sites. It may also be pos-

sible to apply sampling to track the propagation for only some of the objects created

at an allocation site.

Table 2.1 shows measurements of the reference propagation graphs obtained in

a context-insensitive setting. The first two columns contain the number of loaded

non-library classes and the number of executed methods in those classes. The third
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column shows the number of allocation sites (in these methods) that were executed

at least once. These measurements characterize the sizes of the analyzed programs.

The NATH columns show the number of NATH allocation sites and NATH run-

time objects. NATH objects are those that are never assigned to the heap. A NATH

allocation site creates only NATH objects, but some NATH objects may be created by

non-NATH sites. These measurements indicate the existence of objects that do not

interact with the rest of the heap. An interesting observations is that the percentages

of NATH allocation sites (the ratios between columns 4 and 3) are typically large for

almost all of the programs. This result indicates that Java programs often employ

relatively temporary and localized data structures, which presents opportunities for

optimizations.

The next two columns report the number of never-used allocation sites and never-

used run-time objects. An allocation site is said to be never-used when all of the ob-

jects it allocates are never used. These measurements characterize how efficiently the

allocated objects are used. If a program creates a large number of objects, but never

or seldom uses them, it is certainly inefficient, and improvements may be achievable

after code transformations. High percentages of never-used sites (i.e., ratios between

columns 6 and 3) provide a symptom of potential bloat, and could lead a programmer

or a performance tuning expert to uncover performance problems.

Columns “WRI Sites” show the number of write-read-imbalance sites under two

different threshold values t. Recall from Section 2.4 that for a producer node, a cost-

benefit ratio is taken between the sum of node frequencies for the reachable stack-to-

heap reference assignment nodes (heap writes), and that of heap-to-stack ones (heap

reads). An allocation site is counted when the cost-benefit ratio of its corresponding
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producer node is greater than the threshold. The sites without any heap writes (i.e.,

NATH sites) are already identified by the NATH analysis, and are not considered for

the WRI analysis. Threshold t = 2 selects sites whose allocated objects are written to

the heap at least twice as many times as they are read back from the heap. The special

threshold value t =∞ covers the cases when the objects are only written to the heap

but never read back. Larger numbers of WRI sites indicate higher degrees of wasted

heap propagation, which could potentially be eliminated by code transformations.

The last two columns show the average numbers of (1) method invocation nodes

(calls and returns), and (2) heap propagation nodes (heap writes and reads) reachable

from a producer node. They characterize the complexity of the reference propagation,

from the perspective of inter-procedural control-flow and heap data structure inter-

actions. If the number of method invocation nodes is high, objects are propagated

through large portions of the call structure, and the propagation is likely to be more

difficult to understand and refactor. The same is true for the average number of heap

propagation nodes, which indicate points of interaction with other heap objects. By

presenting to the programmer these two metrics for a suspicious allocation site, our

analysis can help to distinguish objects that are relatively easy to understand from

objects whose behavior may be too complex to be worth further investigation.

Table 2.2 shows the size of the reference propagation graph (number of nodes

and number of edges) under different context-sensitivity abstractions. The first

two columns show the measurements for the context-insensitive setting, followed by

object-sensitive settings with different numbers c of equivalence classes in the context
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Program
ctx-insen c=4 c=8 c=16 c=#AllocSites

#Nodes #Edges #Nodes #Edges #Nodes #Edges #Nodes #Edges #Nodes #Edges
compress 227 375 227 375 227 375 227 375 227 375

db 405 692 457 768 489 808 511 835 511 835
jack 4383 7793 4699 8241 4874 8468 5117 8775 6459 10332
javac 23307 26126 25632 50256 26366 51575 26706 52097 27407 53205
jess 3340 5507 3602 5933 3611 5947 3735 6148 3840 6289

mpegaudio 1232 2063 1740 2903 1813 2982 1813 2982 1813 2982
mtrt 3727 7913 8872 19447 13079 27990 13508 28654 14347 30484

search 37 73 37 73 37 73 37 73 37 73
euler 451 950 451 950 451 950 451 950 451 950

moldyn 156 277 156 277 156 277 156 277 156 277
montecarlo 312 536 312 536 330 570 333 570 333 570
JGraytracer 425 575 456 610 462 616 462 616 462 616

bh 331 654 343 671 343 671 343 671 343 671
bisort 55 137 55 137 55 137 55 137 55 137
em3d 92 151 92 151 92 151 92 151 92 151
health 146 216 146 216 146 216 146 216 146 216
mst 131 232 131 232 131 232 131 232 131 232

perimeter 214 415 214 415 214 415 214 415 214 415
power 195 287 269 387 269 387 269 387 269 387

treeadd 39 56 51 72 57 76 57 76 57 76
tsp 121 419 121 419 121 419 121 419 121 419

voronoi 327 758 327 758 327 758 327 758 327 758
antlr 18199 36137 18815 37249 19175 37696 19385 38245 19561 38409
bloat 39505 85509 47569 102695 51734 111081 53674 114273 61618 126784
chart 12646 16876 14346 19486 15314 20853 16950 23431 17664 23955

eclipse 92206 179670 106219 201934 107015 206926 109244 209218 110346 212998
fop 14305 22741 15153 23811 15787 24708 16043 24973 16528 25524

hsqldb 5873 10601 6649 11656 7104 12464 7280 12686 7973 13819
jython 58835 96797 60495 99011 61774 100825 63221 103286 67127 107407
luindex 3226 5727 3441 6024 3480 6084 3511 6096 3558 6158
lusearch 3102 5158 3469 5660 3601 5888 3607 5956 3730 6103

pmd 17469 32074 18046 32984 18126 32996 18409 33431 19288 34749
xalan 18056 32584 19645 35293 20458 36887 20437 36805 21486 38397
JFlex 3860 5887 4204 6510 4304 6668 4313 6676 4421 6861

jbb2000 6451 11596 7457 13480 7957 14491 8707 16042 8729 16287
jbb2005 6198 10577 6870 11627 7037 11830 7245 12082 7559 12526

Table 2.2: Comparison of graph sizes for context-insensitive and four object-sensitive
settings.

encoding (c = 4, 8, 16). The last column shows the measurements under a full object-

sensitivity setting, where each receiver object ID belongs to a separate equivalence

class (Section 2.3).

As the degree of context-sensitivity increases, graph size typically remains about

the same or grows slightly. With more precise context information, we can bet-

ter distinguish the run-time allocations, and more producer nodes can be created.

Such a graph presents a more precise and detailed picture: instead of describing the

“per producer” propagation, it provides insights into the “per producer, per context”
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behavior of objects. Although in principle the cost of collecting this more precise in-

formation can be high (in terms of running time and memory consumption), in reality

this does not appear to be the case: context-sensitive information can be collected

with little additional overhead. For the programs we studied, the average running

time overhead when using the fully context-sensitive encoding is 1.4% (compared to

using the context-insensitive one). For the memory usage overhead, the increase is

3.5%. This observation indicates that future work could investigate even more precise

context-sensitivity abstractions.

2.7 Summary

This chapter presents a novel reference propagation profiling tool used to uncover

performance problems in Java applications. It tracks the propagation of object ref-

erences and encodes the results in a reference propagation graph. The information

stored in the graph is specific to producers of object references (and the run-time

contexts of these producers). Several client analyses are developed to analyze these

graphs, and to report to developers a ranked list of suspicious allocation sites, anno-

tated with information about the likely ease of performing transformations for them.

Interesting performance inefficiency patterns are discovered by these clients. The

properties of the reference propagation graphs are studied on 36 Java programs. The

experimental results show that the degree of context-sensitive precision can be in-

creased without significant additional costs. The running time reduction achieved

by optimizing suspicious allocation sites can be significant, as demonstrated in sev-

eral case studies. These findings suggest that our approach is a good foundation for
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implementing various client analyses to uncover reference-propagation performance

problems, and to explain these problems to the developers.

35



CHAPTER 3: LeakChecker: Practical Static Memory Leak
Detection for Managed Languages

In managed languages such as Java and C#, developers do not need to worry about

memory correctness issues such as dangling pointers and double free errors. However,

it remains challenging to avoid leaks. A memory leak in a managed language is

caused by keeping unnecessary references to objects that are no longer used. These

objects cannot be reclaimed by the garbage collector (GC), often leading to severe

performance degradation and even program crashes.

Problems and Motivation Static analysis techniques [19, 49, 50, 59, 83, 104,

114] have been widely used to detect memory leaks for unmanaged languages such as C

and C++. The explicit memory management in such languages allows the formulation

of leak detection as a reachability problem—a control-flow path that creates an object

but does not free it may reveal a leak. This formulation cannot be adopted for

managed languages, because object deallocation is done automatically by GC. To the

best of our knowledge, [96] and [30] are the only two techniques that can statically

detect Java memory leaks. At the core of [96] is an algorithm to detect live regions

of arrays, while [30] uses shape analysis to identify the objects that are reachable but

no longer used. However, there is no evidence that precisely computing array live

regions [96] or performing bi-abduction [30] can scale to large-scale applications such

as Eclipse, and any attempt to trade off precision for efficiency can lead to reports that
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are of little value due to great numbers of false warnings. In addition, no evaluation

is provided in [96] and [30], and thus, their effectiveness is unclear.

Dynamic analysis [14, 38, 48, 57, 74, 90, 117, 118] is typically used to find memory

leaks in managed languages. Existing dynamic analyses are debugging techniques

that require appropriate test inputs and can detect leaks only if they are triggered

in a test execution. It can be very difficult to find such leak-triggering test inputs,

especially during development and in-house testing, when it may be complicated

to set up appropriate inputs and execution environments. This is particularly the

case with component-based software (such as the development of Eclipse plugins and

smartphone apps): components are developed separately and tested only in simulated

environments; problems may be seen only after they are shipped and start communi-

cating with other components in production settings. In this regard, a static analysis

is highly desirable because it can detect leaks without running a program, thereby

leading to improved software quality.

Challenges The major challenge for developing a static memory leak detector

for managed languages is the difficulty of precisely computing object liveness prop-

erties. Even with highly precise heap modeling and data-flow analysis, it is still

expensive to determine precisely whether an object would be used after a certain

point in the program execution. The second challenge is that detecting and report-

ing unnecessary references at a low level (e.g., at heap reads and writes) can be

of very limited help because such reads and writes can be far away from the root

cause of the leak. For example, reporting the statement that writes an object into a

HashMap.Entry without any context does not provide any suggestion as to how the

leak can be fixed. A useful static analysis should be more informative and should
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provide high-level information more closely related to the application semantics and

the cause of the leak. In addition, such precise static analysis should have practical

cost when analyzing real-world large-scale applications.

Insight We present LeakChecker, the first practical static leak detector for Java

that overcomes all these challenges by exploiting developer insight, and by identifying

and reporting unnecessary references at a higher level of abstraction. An important

observation that motivates the design of LeakChecker is that a severe leak is often

related to frequently occurring program events. If each such event does not appro-

priately clean up a small number of references, unnecessary references can quickly

accumulate and cause the memory footprint to grow. These events include, for ex-

ample, database transactions, processing of user requests in web servers, iterative

refinements of certain program properties in a static analysis, etc. For example, in

Eclipse 3.2, a number of objects are unnecessarily kept alive every time a diff between

two zip files is performed [14, 57, 117]. Comparing a few large zip files can quickly

make Eclipse run out of memory. In general, an object created by one event instance

may escape this instance and be used by future instances of the event. However, if

such an escaping object is never used by future event instances, it is very likely to be

a leaking object.

Events are often generated by loops. LeakChecker analyzes each important loop

in a program and detects the objects that escape one iteration of the loop and never

flow back into any later iteration from the memory locations to which they escape. A

large-scale application may have a large number of loops, and precise analysis of each

one can be prohibitively expensive. The developer usually has a clear understanding
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of which loop is the “main” event loop and which loop contains performance-critical

computations; these loops are given as input to LeakChecker.

To further improve tool usefulness, the developer can also specify a repeatedly-

executed code region (not a loop) for checking. This is particularly suitable for

component-based software where the developer of a component does not have access

to the event loop. For example, the developer of an Eclipse [37] plugin could specify

the method that achieves the core plugin functionality as a checkable region—this

method may be invoked in an invisible loop located in another plugin or in the

framework.

The benefit of using a developer’s specification is two-fold: (1) memory leak detec-

tion can be performed within a relatively small scope, leading to improved practicality

and scalability; and (2) the reported leaks are easy to understand and fix, because

their root causes are very likely to be the operations that store the leaking objects

into objects created outside of the region. Once the important loops and code regions

are specified by the tool user, the rest of the approach is fully automated. Because

any repeatedly-executed code region can be thought of as the body of an (artificial)

loop, this work discusses only leaks in a loop.

Analysis Technique LeakChecker attempts to identify a path pout—a sequence

of statements that write to heap objects—through which an object escapes a loop

iteration, as well as a path pin of heap read statements through which an object

flows back into a loop iteration. Identification of these two paths considers inter-

procedural control flow with properly matched method calls and returns. Objects

that only flow out through pout but do not flow back in through an appropriate

pin are immediately considered leaking. For objects with a proper pin , we further
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consider two conditions. First, pout and pin should be related to the same outside

object. This condition holds when, for the last heap write statement a.fld = b in

pout and the first heap read statement c = d.fld in pin , variables a and d may point

to the same outside object. Second, we use an extended recency abstraction to check

whether the loop iteration associated with pout occurs earlier than the one associated

with pin . To achieve this, the analysis distinguishes objects by the loop iteration

in which they are created. If both conditions hold, the object is considered to be

properly shared between iterations; otherwise, it is reported as leaking. The analysis

is formalized as a type and effect system described in Section 3.2. The analysis

implementation (Section 3.3), employs a demand-driven context-free-language (CFL)-

reachability formulation to explore pout and pin individually for each object created

inside the loop, without requiring an initial whole-program analysis. This on-demand

nature is particularly suitable for analyzing partial programs and components.

Key to the success of LeakChecker is the shift of focus from computing object

liveness, which is very difficult to achieve precisely and efficiently for large programs,

to the easier goal of identifying objects that flow out of a loop but never flow back

in. This leak pattern is inspired by experience from dynamic leak detectors (e.g.,

[57,74,117]), where repeatedly-executed code regions and objects escaping from them

are often shown to be the culprits. LeakChecker was implemented using the Soot

analysis framework [109] and evaluated on eight large Java applications that have

memory leaks. The tool found both known and unknown leaks in all applications, and

reported comprehensive context information that can help to quickly identify their

root causes. These promising initial findings demonstrate that the proposed static

checking technique can be used successfully to find potential leaks during real-world
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software development. The contributions described in this chapter first appeared

in [121].

3.1 Overview

This section presents an overview of the static analysis used in LeakChecker.

Figure 3.1 shows a simple example adapted from the SPECjbb2000 benchmark. Order

objects are created (line 5) and processed by a Transaction (line 6). Each transaction

contains Customers (lines 12–15), and order processing saves the Order in field curr

of the transaction (line 19) and adds it into one of the Customers (line 22). Before an

Order is processed, the transaction first displays its current order in this.curr (lines

26–30), which is set in the previous iteration. At the end of display, the current

order is removed from curr (line 29). While the developer thinks this removal will

make the Order object unreachable, he/she forgets to clean up references from the

Customer object. These unnecessary references can lead to a severe memory leak.

Extended recency abstraction We first define a new abstraction for heap

objects, called extended recency abstraction (ERA), which will be computed by the

type and effect system described in Section 3.2. ERA extends the traditional notion

of recency abstraction [12,77] by distinguishing the objects that are carried over from

one iteration to another from those that escape the loop but never flow back in. The

terms “object” and “allocation site” will be used to refer to a static abstraction of

heap objects (the new expression that created the object), while “instance” will refer

to a run-time instance of the abstraction. The ERA for an object can have one of

four abstract values: ō (outside), c̄ (current), f̄ (future), and > (unknown). For a

particular loop l, an object whose ERA is ō with respect to l must be created outside
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l; otherwise, the object is created inside the loop. If the object’s ERA is c̄, the object

must be iteration-local. To illustrate, consider a run-time iteration i of loop l where

an instance of an allocation site a is created. If a’s ERA is c̄, this guarantees that

the instance must die before iteration i finishes. If a’s ERA is f̄ , this instance may

escape iteration i, and if it does escape, it may be used in the loop (i.e., it may flow

back) in a later iteration. Finally, a’s ERA value of > implies that this instance may

escape iteration i, and if it does escape, it will not be used in a later iteration.

Example We use ak to denote the allocation site at line k of Figure 3.1. Consider

ERAs with respect to the loop at line 3. The ERAs for Transaction a2, array a10,

Customer a13, and Order array a34 are all ō, because they are created before the loop

starts. The ERA for a5 is f̄ because every instance of Order escapes the iteration in

which it is created, and is used in the next iteration (at line 26). We are particularly

interested in objects whose ERA is f̄ or >, because iteration-local objects can never

be leaks for the loop.

Transitive flows-out relationship To understand the reference flow, we

compute a transitive flows-out relationship d �∗g b between an object d whose ERA is

f̄ or > and an object b whose ERA is ō. This relationship indicates that a run-time

instance of d may still be live after its creating iteration finishes, because it is inside

a data structure that is saved in field g of an instance of the outside object b. In

other words, it is the reference b.g that prevents this instance of d from being garbage

collected. Note that b must be the closest outside object in this reference path—there

does not exist any other outside object c such that d �∗g′ c and c can be reached from

b. In our example, there are two flows-out relationships for loop l: a5 �∗curr a2 and

a5 �∗elem a34. Here, as typically done in prior work, elem denotes an artificial field
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1 static void main(String[] args) {

2 Transaction t = new Transaction();

3 for (int i = 0; i < N; i++) {

4 t.display();

5 Order order = new Order(...);

6 t.process(order);

7 }

8 }

9 class Transaction {

10 Customer[] customers = new Customer[...];

11 Transaction() {

12 for (int i = 0; i < numCusts; i++) {

13 Customer newCust = new Customer(...);

14 customers[i] = newCust;

15 }

16 }

17 Order curr;

18 void process(Order p) {

19 this.curr = p;

20 Customer[] custs = this.customers;

21 Customer c = custs[p.custId];

22 c.addOrder(p);

23 ...// process order

24 }

25 void display() {

26 Order o = this.curr;

27 if(o != null) {

28 ... // display o

29 this.curr = null; //remove o

30 }

31 }

32 }

33 class Customer {

34 Order[] orders = new Order[...];

35 void addOrder(Order y) {

36 Order[] arr = this.orders;

37 arr[...] = y;

38 }

39 }

Figure 3.1: An example adapted from SPECjbb2000.

of the array object representing all array elements. For loop 12, only one flows-out

relationship exists: a13 �∗elem a10.

Transitive flows-in relationship We are also interested in how an object

flows into the loop from a field of an outside object. Each flows-in relationship is

of the form d �∗g b, indicating that the data structure containing an instance of d

created from a previous iteration of the loop is carried over to the current iteration

by field g of an instance of the outside object b. The ERA for b must be ō, and we
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are interested only in d whose ERA is either f̄ or >. Similarly, b must be the closest

outside object in this reference path—there does not exist any other outside object c

such that d �∗g′ c and c can be reached from b. In the example shown in Figure 3.1,

one flows-in relationship (a5 �∗curr a2) exists for the loop at line 3, implying that an

Order instance created in one iteration of the loop may be carried over to a later

iteration through field curr of the Transaction instance.

Leak detection First, any object whose ERA is > is considered by LeakChecker

as a potential leak because it may not flow back into the loop. Second, for each flows-

out relationship d �∗g b such that d’s ERA is f̄ and b’s ERA is ō, if there does not exist

a corresponding flows-in relationship d �∗g b, LeakChecker considers d as a potential

leak because it is saved in a field from which it is never retrieved and used. This field

unnecessarily maintains a reference that may keep instances of d from being garbage

collected. In our example, the Order object a5 will be recognized and reported as

a leaking object, because it has two flows-out relationships but only one flows-in

relationship. The reference edge from a34 to a5 is a redundant edge because a5 is never

retrieved from this edge. While in this example the allocation sites are used directly

to represent objects, LeakChecker is a context-sensitive analysis that uses a CFL-

reachability formulation [100] to distinguish objects created by the same allocation

site under different calling contexts. The analysis reports each leaking object (e.g.,

a5), the redundant reference edge (e.g., a34.elem), and the calling context under which

the leaking object is saved through the edge (a by-product of the context-sensitive

CFL-reachability computation).

LeakChecker soundness The first phase of the analysis computes ERA for

each object and the two kinds of flow relationships, and the second phase matches
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these relationships to find leaks. The first phase is sound: any object that flows out

of/into a loop through an outside object is correctly identified and the relationships

are appropriately classified. The second phase is unsound, due to the matching of

flows-in and flows-out relationships. For example, even if a flows-in relationship (d �∗g

b) matches a flows-out relationship (d �∗g b), which indicates that d is not a leak, the

two run-time instances of b (that an instance of d is added into and retrieved from,

respectively) may not be the same. In addition, if g represents an array element (i.e.,

elem), the two heap locations may be different. While in the first case a must-alias

analysis could be used to verify whether the two instances of b are the same, for the

second case a practical static analysis often cannot precisely handle array indices.

Although it may be possible to perform more precise analysis of array indices (e.g.,

[103]), these techniques are generally expensive and cannot scale to large applications.

Despite these sources of unsoundness, LeakChecker has not missed any known

leaks in our studies on eight large applications. This is because in order to have

severe effects on program performance, a leak has to exhibit sustained behaviors:

an allocation site keeps creating instances that escape the loop and are no longer

used. Very often these instances escape to an outside container, and this container

is never read by later loop iterations. We have not seen any case where only a fixed

set of elements are retrieved from the container (but a growing number of elements

is untouched), which would cause LeakChecker to miss a sustained leak.

LeakChecker precision For each analyzed loop, the approach can precisely

identify the objects that escape the loop through the references that are never read

again in the loop. However, these references may be used later after the loop termi-

nates, leading to an imprecise leak report. Hence, the precision of the analysis relies
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on the appropriate selection of loops to be checked. In the real-world (e.g., enterprise)

applications that often suffer from leaks, this task is relatively easy; the case studies

from Section 3.4 illustrate this point. For example, it is natural to select loops that

create transactions in a database system, or that process events in an event-based

system. To find leaks in an Eclipse plugin, we can use an artificial loop containing

the body of a plugin interface method. Of course, it can be difficult to specify such a

loop in certain applications, such as program analysis tools, because they often save

all objects created in one phase and carry them over to another phase for further

processing. However, these applications often do not run repeated tasks, and leaks

may not have as significant of an impact in them as in business applications that

exhibit repeated behavior.

Another source of imprecision is the lack of precise handling of destructive updates.

For example, suppose an inside object flows to a field of an outside object and later

this field is assigned null without being read in between. If the analysis cannot

perform a strong update at the null assignment, the flows-out without a matching

flows-in will be considered a symptom of a leak and a false warning will be reported.

In practice, however, cases in which a reference is removed without being read are

quite uncommon. Finally, an unused reference does not necessarily imply that the

referenced object is no longer used. The object may be loaded from other (necessary)

references and used in later iterations of the loop. In such a case, although the

reported object is a false leak, this information is still useful because the redundant

reference is worth inspecting and fixing.
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Variable b, c ∈ V
Alloc Site a ∈ A
Instance Field g ∈ F
Loop Label l ∈ L
Statement s ∈ S

s ::= b = c | b = new a | b = c.g | b.g = c | b = null |
s ; s | if (*) then s else s | whilel (*) do s

Iteration Count j ::= 0 | 1 | 2 | . . . ∈ N
Iteration Map ν ∈ L→ N
Loop State π ::= 〈l , j〉 l ∈ L ∪ {0}
Labeled Object ô ::= oπ ∈ P
Heap σ ∈ P× F→ P ∪ {⊥}
Environment ρ ∈ V→ P ∪ {⊥}
Heap Store Effect Ψ ::= ∅ | Ψ ∪ {ô1 �jg ô2}
Heap Load Effect Ω ::= ∅ | Ω ∪ {ô1 ≺jg ô2}

Figure 3.2: A while language: syntax and semantic domains.

3.2 Memory Leak Detection

This section formalizes the notion of a memory leak and formally defines the core

analysis to find such leaks. First, we define a simple Java-like while language, its

abstract syntax, and its operational semantics. Using this semantics, we formally

define what we mean by a loop-related memory leak in an object-oriented program.

Second, we present a type and effect system that abstracts the concrete objects and

the flows-in/flows-out relationships. Finally, the memory leak detection algorithm is

presented based on the abstract effects computed by the type and effect system.

3.2.1 A Type and Effect System

Language The abstract syntax of the while language and its semantic domains

are shown in Figure 3.2. This language has all important features of an object-oriented

language except function calls. They are eluded in this section to ease the formal

development. In our implementation, call semantics and calling context sensitivity

are modeled by the CFL-reachability formulation that treats the entry and the exit of
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the same method as a pair of balanced parentheses; this technical issue is elaborated

later.

Each loop has a label l and an iteration count j that is incremented per iteration.

Map ν maps each loop to its current iteration count. Each run-time object ô is a

regular object annotated with a loop state 〈l, j〉, indicating that the object is created

in the j-th iteration of loop l. If ô is created in the loop, its j is a positive number;

otherwise, its j is always 0. Environment ρ maps a variable b to the heap object ô

pointed-to by b. Heap σ records when a instance field g of one heap object ô2 points

to another heap object ô1. Both ρ and σ are augmented with ⊥, representing a null

value.

A concrete heap store effect captures a reference relationship ô1 �jg ô2, representing

that (a reference to) ô1 is saved in instance field g of object ô2 in the j-th iteration

of the loop. A concrete heap load effect captures a retrieval action ô1 ≺jg ô2 where ô1

is obtained from field g of ô2 in the j-th iteration. These two kinds of effects will be

employed to compute the transitive flows-out and flows-in relationships.

Concrete Semantics Figure 3.3 shows the semantics of the language. A judg-

ment s, ν, σ, ρ ⇓ ν ′, σ′, ρ′,Ψ ,Ω starts with a statement s, followed by loop iteration

map ν, heap σ, and environment ρ. The execution of s terminates with an iteration

map ν ′, heap σ′, environment ρ′, heap store effect set Ψ, and heap load effect set Ω.

Rules Assign, Comp, If-Else1, If-Else2 (not shown), and While are stan-

dard. In rule new, the loop state pair associated with each run-time object o is

〈l, ν(l)〉, where l is the loop in which the object is allocated and ν(l) is the current

iteration count of l. If the allocation site is not in any user-specified loop, l = 0,

indicating that any object created here is an outside object for any loop. At each
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σ′ = σ[λg.(ô.g 7→ ⊥)] ô = (if a is outside loop l then o〈0,0〉 else o〈l,ν(l)〉)

b = new a, ν, σ, ρ ⇓ ν, σ′, ρ[b 7→ ô], ∅, ∅
(New)

b = c, ν, σ, ρ ⇓ ν, σ, ρ[b 7→ ρ(c)], ∅, ∅ (Assign)

b = null, ν, σ, ρ ⇓ ν, σ, ρ[a 7→ ⊥], ∅, ∅ (Assign-Null)

ôc = ρ(c) ôb = σ(ôc.g)

Ω = (if ôb = ⊥ then ∅ else {ôb ≺
ν(l)
g ôc})

b = c.g, ν, σ, ρ ⇓ ν, σ, ρ[b 7→ ôb], ∅,Ω
(Load)

ρ(c) = ôc ρ(b) = ôb

Ψ = (if ôb = ⊥ then ∅ else {ôb �
ν(l)
g ôc})

c.g = b, ν, σ, ρ ⇓ ν, σ[ôc.g 7→ ôb], ρ, µ,Ψ, ∅
(Store)

s1, ν, σ, ρ ⇓ ν′, σ′, ρ′,Ψ,Ω s2, ν
′, σ′, ρ′ ⇓ ν′′, σ′′, ρ′′,Ψ′,Ω′

s1; s2, ν, σ, ρ ⇓ ν′′, σ′′, ρ′′,Ψ ∪Ψ′,Ω ∪ Ω′
(Comp)

s1, ν, σ, ρ ⇓ ν′, σ′, ρ′,Ψ,Ω
if (∗) then s1 else s2, ν, σ, ρ ⇓ ν′, σ′, ρ′,Ψ,Ω

(If-Else-1)

s, ν[l 7→ ν(l) + 1], σ, ρ ⇓ ν′, σ′, ρ′,Ψ,Ω whilel (∗) do s, ν′, σ′, ρ′ ⇓ ν′′, σ′′, ρ′′,Ψ′,Ω′

whilel (∗) do e, ν, σ, ρ ⇓ ν′′, σ′′, ρ′′,Ψ ∪Ψ′,Ω ∪ Ω′
(While)

Figure 3.3: Concrete operational semantics.

store c.g = b into the heap, an effect ôb �jg ôc is recorded in Ψ, while at each load

b = c.g from the heap, an effect ôb ≺jg ôc is recorded in Ω. Note that if the loop

iteration count k of the retrieved object ôb is < j, the load retrieves an object created

in a previous iteration. The operational definition of a memory leak is as follows:

Definition 3.2.1 (Leaking Object) A run-time object o〈l,j〉 is the root of an escap-

ing data structure during the execution of loop l if there exists a heap store effect

o〈l,j〉 �kg q〈0,0〉 ∈ Ψ. An object r〈l,j
′〉 is a leaking object if

r〈l,j
′〉 �∗ o〈l,j〉 ∧

(
(1)@(m > k) : o〈l,j〉 ≺mg q〈0,0〉 ∈ Ω ∨
(2)@(n > j′ ∧ ŵ ∈ P) : r〈l,j

′〉 ≺ng′ ŵ ∈ Ω

)

where �∗ is the transitive closure of relation �.
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Ext. Recency Abst. j̃ ::= ō | c̄ | f̄ | > ∈ NA
Loop State Abst. π̃ ::= 〈l, j̃〉 l ∈ L ∪ {0}
Type τ̃ ::= oπ̃ ∈ T
Type Environment Γ ∈ V→ T ∪ {⊥,>}
Type Heap H ∈ T× F→ T ∪ {⊥,>}
Abst. Store Effect Ψ̃ ::= ∅ | Ψ̃ ∪ {τ̃1 �g τ̃2}
Abst. Load Effect Ω̃ ::= ∅ | Ω̃ ∪ {τ̃1 �g τ̃2}

(a)

(1) τ̃ < ô ⇔ τ̃ = > ∨ (τ̃ = ⊥ ∧ ô = ⊥)
∧(ô.o = τ̃ .o ∧ τ̃ .π̃ < ô.π)

(2) π̃ < π ⇔ π̃.l = π.l ∧ (π.l = 0 ∨ π̃.j̃ < π.j)

(3) j̃ < j ⇔ (j = 0 ∧ j̃ = ō) ∨ (j > 0 ∧ j̃ 6= ō)

(4) Ψ̃ < Ψ ⇔ ∀(p̂1 �jg p̂2) ∈ Ψ : ∃(τ̃1 �g τ̃2) ∈ Ψ̃ : (τ̃1 < p̂1)

∧(τ̃2 < p̂2) ∧ (p̂1.π.j 6= j ⇒ (τ̃1.π̃.j̃ = f̄ ∨ τ̃1.π̃.j̃ = >)))

(5) Ω̃ < Ω ⇔ ∀(p̂1 ≺jg p̂2) ∈ Ω : ∃(τ̃1 �g τ̃2) ∈ Ω̃ : (τ̃1 < p̂1)

∧(τ̃2 < p̂2) ∧ (p̂1.π.j 6= j ⇒ (τ̃1.π̃.j̃ = f̄ ∨ τ̃1.π̃.j̃ = >)))

(6) Γ < ρ ⇔ (∀v ∈ Dom(ρ) : Γ(v) < ρ(v))

(7) H < σ ⇔ (∀ô.g ∈ Dom(σ) : ∃τ̃ .g ∈ Dom(H) :
τ̃ < ô ∧ H(τ̃ .g) < σ(ô.g))

(b)

Figure 3.4: Abstract semantic domains: (a) types and abstract effects; (b) abstraction
details.

This definition formally describes the leaking objects targeted by our approach.

If an inside object o is assigned to a field g of an outside object q in iteration k, o

is considered to be the root of an escaping data structure. Any inside object r that

is transitively reachable from o (i.e., r〈l,j
′〉 �∗ o〈l,j〉) is thus considered escaping. The

escaping inside object r is a leaking object if (1) the root o of the data structure is

leaking, that is, o is never loaded back in any later iteration through q.g, or (2) r itself

never flows back to the loop in a later iteration. The second condition represents a

scenario where a subset of this escaping data structure may flow back into the loop,

but this subset does not include r. The formulation does not consider nested loops;

although object flow across iterations of nested loops can be easily modeled, we have

not found it useful in detecting real-world leaks.
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Abstract Semantics We develop a type and effect system that uses an abstract

semantics to conservatively approximate the two heap effects. Figure 3.4(a) shows

the types and effects used to abstract the concrete semantics. Iteration counts j are

abstracted by ERA j̃ (which can have four abstract values ō, c̄, f̄ , and >), objects

ô are abstracted by types τ̃ , environment ρ is abstracted by type environment Γ,

heap σ is abstracted by type heap H, and the two concrete effects in Ψ and Ω are

abstracted by the abstract effects in Ψ̃ and Ω̃. Type environment Γ and type heap H

are augmented with ⊥ and >, which represent, respectively, no type and any type.

Details of how the concrete semantic domains are abstracted can be found in

Figure 3.4(b), where < denotes the abstraction relation. In particular, rules (4) and

(5) show how the two heap effects are abstracted. An abstract store effect τ̃1 �g τ̃2 ∈ Ω̃

appropriately abstracts concrete effect p̂1 ≺jg p̂2 ∈ Ω if types τ̃1 and τ̃2 appropriately

abstract p̂1 and p̂2, respectively. In addition, if this store happens in an iteration

different from the one where p̂1 is created (p̂1.π.j 6= j), the ERA of τ̃1 must be either

f̄ or >.

The abstract semantics of our analysis is shown in Figure 3.5 and Figure 3.6.

We discuss only a few important rules. When an allocation site is executed in an

iteration, the ERA of the type is set to c̄, indicating that this object is created in the

current iteration of the loop (rule TNew). In the beginning of each iteration, the

abstract loop state π̃ of each type in environment Γ is incremented by rule TWhile

using operator ⊕ (whose definition is shown in rule (6) of Figure 3.6). This sets the

ERA of each existing loop object (created in previous iterations) to >. If an existing

object is iteration-local and cannot escape to the current iteration, its ERA will be

updated back to c̄ when its allocation site is encountered again. If the object escapes
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Γ′ = Γ[b 7→ τ̃ ] H′ = H[λg.(τ̃ .g 7→ ⊥)] τ̃ .o = a τ̃ .π̃ = (if a is outside loop l then 〈0 , ō〉 else 〈l , c̄〉)
Γ,H ` b = new a : Γ′,H′, ∅, ∅

(TNew)

Γ,H ` b = c : Γ[b 7→ Γ(c)],H, ∅, ∅ (TAssign) Γ,H ` b = null : Γ′[b 7→ ⊥],H, ∅, ∅ (TAssign-Null)

τ̃c = Γ(c) τ̃b = H(τ̃c.g)

τ̃b
′ = (if τ̃b.π̃.j̃ = > then τ̃b.o

〈τ̃b.π̃.l,f̄〉 else τ̃b) Ω̃ = (if τ̃b
′ 6= ⊥ ∧ τ̃c 6= ⊥ then {τ̃b′ �g τ̃c} else ∅)

Γ,H ` b = c.g : Γ[b 7→ τ̃ ′b],H, ∅, Ω̃
(TLoad)

τ̃c = Γ(c) τ̃b = Γ(b) Ψ̃ = (if τ̃b 6= ⊥ ∧ τ̃c 6= ⊥ then {τ̃b �g τ̃c} else ∅)
Γ,H ` c.g = b : Γ,H[τ̃c.g 7→ τ̃b], Ψ̃, ∅

(TStore)

Γ,H ` s1 : Γ′,H′, Ψ̃, Ω̃ Γ′,H′ ` s2 : Γ′′,H′′, Ψ̃′, Ω̃′

Γ,H ` s1; s2 : Γ′′,H′′, Ψ̃ ∪ Ψ̃′, Ω̃ ∪ Ω̃′
(TComp)

Γ,H ` s1 : Γ′,H′, Ψ̃, Ω̃ Γ,H ` s2 : Γ′′,H′′, Ψ̃′, Ω̃′

Γ,H ` if (∗) then s1 else s2 : Γ′ ] Γ′′,H′ ] H′′, Ψ̃ ∪ Ψ̃′, Ω̃ ∪ Ω̃′
(TIf-Else)

Γ[λv.(v 7→ Γ(v).oΓ(v).π̃⊕1)],H ` e : Γ,H, Ψ̃, Ω̃

Γ,H ` whilej (∗) do e : Γ,H, Ψ̃, Ω̃
(TWhile)

Figure 3.5: Type rules.

the loop and flows into the current iteration via a load, its ERA is then updated to f̄

by rule TLoad, indicating that the object is used in an iteration different from the

one where it is created. If the object escapes the loop and never flows back in, its

ERA will remain >.

At each control flow merge point, type joins are performed (rule TIf-Else). The

definition of the join operator ] can be found in rules (1)–(5) in Figure 3.6. A finite-

height type lattice can be defined based on the join operations, with > and ⊥ as the

maximum and minimum types in the lattice. Types with different allocation sites are

not comparable. Because joining any type with > results in >, LeakChecker reports

a potential leak as long as there exists a control flow path in which an object escapes

the loop but does not flow back. Abstract effects are recorded by rules TLoad and

TStore. Rule TWhile describes a fixed-point computation—the analysis of the

loop does not terminate until the type of each object does not change any more.
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[Type Join]

(1) τ̃1 ] τ̃2 =

8>><>>:
τ̃1 if τ̃2 = ⊥
τ̃2 if τ̃1 = ⊥
(τ̃1.o)τ̃1.π̃]τ̃2.π̃ if τ̃1.o = τ̃2.o
> otherwise

(2) π̃1 ] π̃2 =


〈π̃1.l , π̃1.j̃ ] π̃2.j̃〉 if π̃1.l = π̃2.l
〈0, 0〉 otherwise

(3) j̃1 ] j̃2 =


j̃1 if j̃1 = j̃2
> otherwise

(4) Γ1 ] Γ2 = Γ3, where ∀v ∈ Dom(Γ3), Γ3(v) =

8<: Γ1(v) if v ∈ Dom(Γ1) and v /∈ Dom(Γ2)
Γ2(v) if v ∈ Dom(Γ2) and v /∈ Dom(Γ1)
Γ1(v) ] Γ2(v) if v ∈ Dom(Γ1) ∩ Dom(Γ2)

(5) H1 ] H2 = H3, where ∀τ̃ .g ∈ Dom(H3),

H3(τ̃ .g) =

8<: H1(τ̃ .g) if τ̃ .g ∈ Dom(H1) and τ̃ .g /∈ Dom(H2)
H2(τ̃ .g) if τ̃ .g ∈ Dom(H2) and τ̃ .g /∈ Dom(H1)
H1(τ̃ .g) ] H2(τ̃ .g) if τ̃ .g ∈ Dom(H1) ∩ Dom(H2)

[Operator ⊕]

(6) π̃ ⊕ 1 =


π̃ if π̃.j̃ = ō
〈π̃.l , >〉 otherwise

Figure 3.6: Join operations on types and domains.

Example Consider the following simple example:

b = new o1; whilel (...) do {

c = new o2; d = new o3; e = new o4;

m = b.g; if(...) n = m.h;

if(...) {b.g = d; d.h = e;} }

When our analysis terminates, the abstract semantic domains contain the follow-
ing values:

Γ = [b 7→ o
〈0,ō〉
1 , c 7→ o

〈l,c̄〉
2 , d 7→ o

〈l,f̄〉
3 ,

e 7→ o
〈l,>〉
4 , m 7→ o

〈l,f̄〉
3 , n 7→ o

〈l,>〉
4 ],

H = [o〈0,ō〉1 .g 7→ o
〈l,f̄〉
3 , o

〈l,f̄〉
3 .h 7→ o

〈l,>〉
4 ],

Ψ̃ = {o〈l,f̄〉3 �g o
〈0,ō〉
1 , o

〈l,>〉
4 �h o

〈l,f̄〉
3 },

Ω̃ = {o〈l,f̄〉3 �g o
〈0,ō〉
1 , o

〈l,>〉
4 �h o

〈l,f̄〉
3 }.

The ERAs for o1, o2, o3, and o4 are ō, c̄, f̄ , and >, respectively. Here o1 is an

outside object and o2 is an iteration-local object. Both o3 and o4 may escape the loop,
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and thus their ERA is changed to > by rule TWhile. If o3 escapes, it must be used

in a later iteration (via m = b.g), and thus, its ERA is updated to f̄ . While o4’s ERA

is also updated to f̄ at load n = m.h, it is changed back to > by the environment

join at the end of the first if statement (because there exists a CFG path in which

it does not flow back into the loop).

3.2.2 Leak Detection

Based on the abstract load and store effects computed by the type and effect

system, leaks can be detected as follows.

Definition 3.2.2 (Flows-out Relation �∗g and Flows-in Relation �∗g) Suppose �∗ and

�∗ are the transitive closures of relations � and �, respectively. A pair (τ̃1, τ̃2) ∈

flows-out relation �∗g if

τ̃1.π̃.j̃ 6= ō ∧ τ̃2.π̃.j̃ = ō ∧ ∃τ̃3 : τ̃3.π̃.j̃ 6= ō ∧ τ̃1 �∗ τ̃3 ∧ τ̃3 �g τ̃2.

Similarly, a pair (τ̃1, τ̃2) ∈ flows-in relation �∗g if

τ̃1.π̃.j̃ 6= ō ∧ τ̃2.π̃.j̃ = ō ∧ ∃τ̃3 : τ̃3.π̃.j̃ 6= ō ∧ τ̃1 �∗ τ̃3 ∧ τ̃3 �g τ̃2.

As discussed in Section 3.1, τ̃1 �∗g τ̃2 if τ̃1 represents an inside object, τ̃2 represents

an outside object, and there exists a sequence of store effects that connects them.

Field g is the field of τ̃2 through which the leaking data structure is saved. Based on

the definitions of �∗g and �∗g, we give the following definition of a memory leak.

Definition 3.2.3 (Memory Leak) An object o is a leaking object, if it has a type τ̃

such that

τ̃ .π̃.j̃ = > ∨ (τ̃ .π̃.j̃ = f̄ ∧ ∃(τ̃ , τ̃ ′) ∈�∗g: (τ̃ , τ̃ ′) /∈�∗g)

In the above example, object o4 is a leaking object, because its ERA is >.
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3.3 Implementation

Calls and Calling Context LeakChecker is implemented based on the Soot

Java program analysis framework [109]. A demand-driven CFL-reachability formu-

lation of points-to analysis [100] is used to identify leaking objects interprocedurally

and with modeling of calling context. In such a formulation, program semantics

is encoded as a flow graph in which nodes represent variables and edges represent

propagation of object references. Points-to relationships are determined by travers-

ing the graph, and flows-in/out information is derived from them. For example, at

a heap store statement c.g = b, the points-to sets of c and b are computed on de-

mand to identify flows-out pairs of objects. The analysis is calling-context-sensitive

in that edge labels representing interprocedural control flow—i.e., method calls and

returns—along a traversed graph path are required to satisfy a matching parentheses

property (defined by a context-free language, thus the term CFL-reachability). With

this addition, objects are distinguished not only by their allocation sites and their

ERA, but also by their calling contexts. When a leaking object is detected, its allo-

cation site, the field through which it escapes, and the calling context under which it

escapes are all reported.

Flow into Library Methods Many popular Java data structures, such as

HashMap and ArrayList, use arrays to store objects. These arrays are read in cer-

tain operations that are not meant to retrieve objects. For example, in method

HashMap.put, entries that match the hashcode of the given key are read from the

array to determine whether the key already exists. If a loop calls put and these reads

are treated as regular object retrievals, LeakChecker may miss some leaks. To avoid

this, we distinguish application code and library code, and use a stronger condition
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Case Mtds Stmts Time (s) LO LS FP FPR
SPECjbb2000 4717 97387 82 95 21 8 38.1%
Eclipse Diff 26300 400647 1638 309 7 3 42.9%
Eclipse CP 30487 466307 1000 123 7 4 57.1%

Mckoi 20373 342041 1985 450 18 17 94.4%
MySQL Connector/J 11868 210053 1059 181 15 9 60%

log4j 3385 62568 35 10 4 0 0%
FindBugs 3817 70177 82 72 9 5 55.6%

Derby 8661 147899 700 165 8 4 50%

Table 3.1: Analysis results.

to identify leaking objects: if an object is read from the heap by a library class, a

flows-in relationship (as defined earlier) exists only when the object is returned to

the application code, accounting for calling context. Hence, even if the array is read

in HashMap.put, LeakChecker does not generate a flows-in relationship because the

loaded object is not returned by the method. This treatment is used not only for

array objects, but also for objects that are not of an array type. This stronger con-

dition for leak identification is applied by our approach to all library methods in the

standard Java libraries.

Pivot Mode For any two leaking objects o1 and o2 such that o1 �∗ o2, object

o2 is more likely to be the root of a leaking data structure, and object o1 can not

be garbage collected as long as o2 is unnecessarily kept alive. In such a case, the

leak can be understood and fixed by just inspecting o2 and removing its unnecessary

reference(s). LeakChecker provides a pivot mode under which leaking objects such

as o1 are omitted from the leak report. The experiments described in Section 3.4 use

this mode.
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3.4 Empirical Evaluation

We evaluated LeakChecker on eight large programs. Some programs (log4j, Find-

Bugs, and Derby) have never been studied before, while leaks in others were discussed

in existing work [15, 106, 117]. These programs cover a variety of domains, including

enterprise trading, software development, database management, logging, and static

program analysis.

3.4.1 Summary of Results

All experiments were performed on a machine with a 3.4 GHz Quad Core Intel

i7-2600 processor, and the analysis was run with a maximum Java heap size of 4 GB.

Characteristics of the studied programs and a summary of leak detection results are

shown in Table 3.1. The table shows the number of reachable methods in the call

graph (Mtds), the number of Soot’s Jimple statements in these methods (Stmts),

LeakChecker’s analysis time (Time) in seconds, the number of context-sensitive allo-

cation sites in analyzed loops (LO), the number of reported context-sensitive leaking

allocation sites (LS), the number of false positives (FP), and the false positive rate

(FPR = FP / LS). For each studied program, one suspicious loop was specified for

checking.

Due to the client-driven nature of the analysis (checking user-specified loops),

LeakChecker is able to quickly detect leaks for all the applications, including large

programs such as Eclipse. The approach does not generate many leak warnings, so

we verified each warning manually. With detailed leak reports, we pinpointed the

root cause of the leak and fixed the underlying defect in less than 2 hours for each
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report. LeakChecker’s average false positive rate is 49.8%, which indicates that is

may be suitable for practical use.

3.4.2 Case Studies

We performed case studies on all eight programs, but due to space limitations

only six of them are discussed below.

SPECjbb2000 SPECjbb2000 is a transaction-based system. In this program,

there is a TransactionManager class that runs different types of transactions, and

the transaction-creating method is only a few calls away from the main method. It

contains a loop that, in each iteration, retrieves a command from an input map, and

then creates and runs a transaction whose type corresponds to the command received.

Thus it is natural to apply LeakChecker on this loop. The tool reported 5 allocation

sites (corresponding to 21 context-sensitive allocation sites), among which 4 (under

6 different calling contexts) can be immediately excluded because the outside heap

locations they flow to are overwritten in each iteration of the loop. The remaining site

allocates longBTreeNode objects. These objects are created to hold element objects,

when the elements are added to a longBTree container data structure. We focused

our efforts on these longBTreeNode objects.

We found that the calling contexts are particularly useful in understanding the

root cause of this problem. In the report, longBTreeNode objects are shown to be

created under 15 different calling contexts. We first examined the top call sites in

these calling contexts. There are only 3 distinct top call sites, and they are all in the

method enclosing the specified loop. These call sites correspond to the processing of

3 types of commands: new order, multiple orders, and payment. The last one, the
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only one that is irrelevant to the leak, indicates that History objects, a representation

of payment history, are saved in the long-lived Warehouse objects. However, we

found that every time a new History object is added, the oldest one will be removed.

Through this particular leaking context, these History objects cannot cause constant

increase in memory footprint.

Excluding payment commands, we were left with 13 calling contexts, all related

to processing of new orders. They indicate that Order objects are kept alive unneces-

sarily by longBTreeNode objects. One such relevant context-sensitive allocation site

is shown below:

* Leaking Object (longBTreeNode; createlongBTreeNode(...), ln 102)

Context - at longBTreeNode.Insert(long,Object), ln 760

at longBTree.put(long,Object), ln 1521

at District.addOrder(Order), ln 264

at NewOrderTransaction.process(), ln 293

at TransactionManager.go(), ln 296

* Outside Object (longBTree; createLongBTree(...), ln 790)

Context - at District.initDistrict(short,byte), ln 184

at District.createDistrict(...), ln 100

at Warehouse.setUsingRandom(short), ln 396

at Company.loadWarehouseTable(), ln 761

* Heap Write (r0.<longBTree: longBTreeNode root> = r5)

Context - at longBTree.put(long,Object), ln 1521

at District.addOrder(Order), ln 264

at NewOrderTransaction.process(), ln 293

at TransactionManager.go(), ln 296

Order object is stored in the newly created longBTreeNode object, which is inserted

into the longBTree and later itself becomes the root of the longBTree:

btree.root = btree.root.Insert(key, order)

The longBTree object is stored in a field of a long-lived outside District object to

represent orders processed through this district. Thus, Order objects are kept alive

and leaking.

Eclipse Diff Eclipse is an IDE that allows plugins to be added into a unified

platform. Plugins are usually developed separately, but they can interact with each

other at run time. It is often unclear to developers how one plugin could be affected
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by others. For example, the leak in this case manifests only after the structures of two

large JAR files are compared multiple times by plugin org.eclipse.compare. Files

selected for comparison are represented by ISelection objects, which are passed into

a runCompare method, the entry method of this plugin. We created an artificial loop

in which runCompare is called, and applied the analysis on it.

LeakChecker reported 7 context-sensitive leaking allocation sites. Three of them

are for temporary GUI objects (e.g., a temporarily shown dialog to indicate progress

of computation) and can be immediately discarded. The rest of them all point to one

allocation site that creates HistoryEntry objects. The associated contexts indicate

that these objects are created when History.addEntry is called. History records

the history of opened editors in a list of HistoryEntry objects, and the editors are

used to show the comparison results. Calling runCompare multiple times would lead

to the creation of multiple history entry objects. These objects are added to the list,

but not properly cleared. Note that History is a class in the platform, and thus it

is very difficult for developers to find and fix the bug (in fact, the root cause of this

bug was found almost one year after it was reported). LeakChecker started from a

code stub that uses the compare plugin, and quickly reported the root cause. To

detect this leak using a dynamic analysis, a full-fledged executable program has to

be developed to automatically select items in the GUI and trigger the comparison

action. This task could be quite challenging for programmers without Eclipse GUI

programming/testing experience.

Mckoi Mckoi [66] is an open-source database system. It has a memory leak when

used as an embedded application. It is leaking because DatabaseSystem objects are

kept alive by running threads. We created a simple client that repeatedly establishes
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a database connection and closes it. When we first ran LeakChecker on the program,

there was only one leaking object reported. The reported LocalBootable object is a

singleton object created only at the first time a connection is established, and the only

outside object to which it escapes is the (outside) JDBC driver object. This is a false

warning, because at run time it is guaranteed to be one instance of LocalBootable

created per connection, which cannot be understood by LeakChecker.

LeakChecker fails to detect the leak because threads are not explicitly modeled. To

solve the problem, threads that never terminate should be treated as outside objects.

However, this is non-trivial as it is generally undecidable to determine whether a

thread would terminate. As a workaround, we tag an object as an outside object if

(1) it is a thread object (an instance of java.lang.Thread) regardless of whether or

not it may terminate, and (2) method start has been called on this object. After

this new modeling was employed, 18 context-sensitive allocation sites were reported.

To verify whether they are true leaks, we manually examined the run method of

each (outside) thread object and found that (1) most of the reported sites are false

positives because they escape to threads that must terminate; and (2) the allocation

site of DatabaseSystem leads to the root cause of the leak, related to non-terminating

thread DatabaseDispatcher. Due to the lack of a thread termination analysis, we

saw a high false positive rate for this program.

log4j log4j [6] is a logging library for Java. When a client application uses

JDBCAppender to write log messages to a remote database, the memory usage in-

creases significantly. We created a simple program that mimics such a client by

sending multiple log requests. Four context-sensitive allocation sites were reported

as leaks, all of them related to a list called removes in JDBCAppender. We inspected
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the code and found that (1) log requests are first added to a buffer list; (2) they

are retrieved (but not removed) one by one from the list for processing, and added

to removes list afterwards; and (3) at the end of one bulk processing, all the request

objects in removes are removed from buffer. However, the removes list itself is

never cleared, leading to the leak.

FindBugs FindBugs [41] is a static analysis tool in which bug detectors are

organized as plugins, while the base framework provides common functionality (e.g.,

parsing of class files). A leak is exposed when FindBugs2.execute is called many

times to analyze a large number of JAR files. We created a loop that iterates over a

list of JAR files and parses the class files contained in each JAR.

LeakChecker reported 9 leaking allocation sites, 5 of which were obviously irrele-

vant to the leak. Objects created at these sites are stored into HashMap objects reach-

able from a global DescriptorFactory object. Because the HashMaps are cleared at

the end of the analysis of each JAR file, no objects can be leaking through them.

These (false) warnings were reported due to the lack of precise handling of destruc-

tive updates. The remaining 4 sites all point to a long-lived IdentityHashMap object,

to which a number of MethodInfo objects are added. However, these MethodInfo

objects are never used or removed. After inspecting these 4 sites, one can easily fix

the leak by appropriately clearing the IdentityHashMap.

Derby In Apache Derby 10.2.1.6 [5], a leak can be seen if a Statement or a

ResultSet is not closed after being used in client/server mode. We created a simple

loop that executes one SQL query per iteration but does not call close on Statement

or ResultSet. Eight leaking allocation sites were reported. Half of them are related

to a Hashtable in SectionManager that saves ResultSet objects—these objects are
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never retrieved, causing the memory leak. All other reported allocation sites are

related to saving Section objects in a Stack. These are false warnings because at

the reported sites only one object instance can be created and escape the loop, due

to use of the singleton pattern.

3.4.3 Experience Summary

Our case studies demonstrate that deep implementation knowledge is not required

for effective use of LeakChecker. In the wide variety of programs we studied, loops

relevant to leaking behavior can be easily identified/created, even for users unfamiliar

with the program. The specified loop can serve as a client that interacts with a

complicated system. To pinpoint bugs in database systems (e.g., Derby), we only

need to create a loop that performs database queries. Similarly, for a plugin-based

system such as Eclipse, we can perform checks on plugins, and leak detection can be

done regardless of whether the bug is in the plugin or in the base system. This is very

useful because it allows testers or performance experts to quickly create the necessary

setup to check the code, without the need to dig into the details of a large system, or

create leak-triggering test cases. Of course, there may be scenarios where the selection

of the loop to be checked is not as straightforward, and additional considerations

may be needed: e.g., identifying loops that are likely to frequently invoke important

subcomponents of the analyzed component, or using application-specific knowledge

to focus on loops whose frequent execution is expected under realistic usage scenarios.

In cases where actual run-time frequency information is available, the checking effort

could be targeted toward the most frequently executed loops.
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A leak report generated by LeakChecker contains both leaking allocation sites

and the specific loops they escape from. Understanding why a reported object never

flows back into a loop is often sufficient to locate the cause of a defect. Relevant

code in the program usually can be easily identified as LeakChecker also reports the

calling contexts and escaping store statements for each leaking object. Our experience

indicates that, given a detailed LeakChecker report, the developer effort to identify

the root cause of a leak is typically small.

In the experiments, most of the false positives were due to internal constraints

used by developers to prevent multiple instances of a loop object from escaping the

loop. In future work, it is worth investigating how LeakChecker can be extended to

detect such code patterns.

3.5 Summary

This chapter presents LeakChecker, the first practical static memory leak detector

for Java. Leak detection is based on the observation that an event loop is often the

place where severe leaks occur, and these leaks are commonly caused by objects out-

side the loop keeping unnecessary references to objects created inside the loop. Such

a loop often iterates a large number of times, causing these references to accumulate

and degrade program performance. LeakChecker uses a novel static analysis to iden-

tify such unnecessary references and reports leaks with sufficient information that

can quickly help the developer find the root causes and come up with the necessary

fixes. We have implemented the analysis and evaluated it on eight large programs

with leaks. The experimental results show that LeakChecker successfully finds leaks

in each of them and the false positive rate is reasonably low. These promising initial
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results strongly suggest that the proposed technique can be used in practice to help

programmers find and fix memory leaks during development. Future work can inves-

tigate algorithmic refinements to achieve higher precision (e.g., through modeling of

destructive updates). Approaches to identify suspicious loops to be checked—for ex-

ample, using structural information extracted from the code, or frequency information

from run-time execution—are also of significant interest.
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CHAPTER 4: LeakDroid: Systematic Testing for Resource
Leaks in Android Applications

Android devices currently lead the smartphone marketplace in the United States

[25] and similar trends can be seen in other countries. Android also has significant

presence in one of the fastest-growing segments of the computing landscape: tablets

(e.g., Google Nexus 7/10, Samsung Galaxy Tab/Note) and media-delivery devices

(e.g., Amazon Kindle Fire, Barnes & Noble Nook HD). The widespread use of these

mobile devices poses great demands on software quality. However, meeting these

demands is very challenging. Both the software platforms and the accumulated de-

veloper expertise are immature compared to older areas of computing (e.g., desktop

applications and server software). The available research expertise and automated

tool support are also very limited. It is critical for software engineering researchers

to contribute both foundational approaches and practical tools toward higher-quality

software for mobile devices.

The features of Android devices and the complexity of their software continue to

grow rapidly. This growth presents significant challenges for software correctness and

performance. In addition to traditional defects, a key consideration are defects related

to the limited resources available on these devices. One such resource is the memory.

In Android’s Dalvik Java virtual machine (VM) the available heap memory typically

ranges from 16 MB to 64 MB. In contrast, in a desktop/laptop VM there are many

hundreds of MB available in the heap. Examples of other limited resources include
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threads, binders (used for Android’s inter-process communication), file handles, and

bitmaps. An application that consumes too many resources can lead to slowdowns,

crashes, and negative user experience.

Resource management is challenging and developers are made aware of this prob-

lem in basic Android training materials [102] and through best-practice guidelines

(e.g., [33]), with the goal of avoiding common pitfalls related to resource usage. A

typical example of such a problem is a resource leak, where the application does not

release some resource appropriately.

Examples. We studied a version of ConnectBot [26], an SSH client with more than

a million installs according to the Google app store. The code contains a leak: when

the application repeatedly connects with a server and subsequently disconnects from

it, bitmaps are leaked, which eventually leads to a crash. As another example, we

studied a version of the APV PDF viewer [7] (which also has more than a million

installs) and discovered a leak, occurring when a PDF file is opened and then later

the BACK button is pressed to close the file. In our experience, leak defects are

related to diverse categories of events such as screen rotation, switching between

applications, pressing the BACK button, opening and closing of files, and database

accesses. If application users observe crashes and slowdowns due to such leaks, they

may uninstall the application and submit a negative review/rating in the application

marketplace.

Challenges. Even though resource leaks can significantly affect software reliability

and user experience, there does not exist a comprehensive and principled approach for

testing for such leaks. The large body of work on dynamic analysis of memory leaks

(e.g., [14, 24, 29, 38, 58, 74, 117, 118]) has the following purposes: (1) observe run-time
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symptoms that indicate a potential leak, and (2) provide information to diagnose the

root cause of the defect (e.g., by identifying fast-growing object subgraphs on the

heap). However, all these approaches fail to address one crucial question: how can

we generate the test data that triggers the leaking behavior? Answering this question

for arbitrary applications is difficult, because leaks may be related to a wide variety

of program functionality. However, as discussed later, a key insight of our approach is

that leaks in Android applications often follow a small number of behavioral patterns,

which makes it possible to perform systematic, targeted, and effective generation of

test cases to expose such leaks.

Each Android application is centered around a graphical user interface (GUI), de-

fined and managed through standard mechanisms provided by the Android platform.

Some leak patterns are directly related to aspects of these mechanisms—for example,

the management of the lifetime for an activity [63], which is an application compo-

nent that interacts with the user. Such leaks cannot be exposed through unit testing

because of the complex execution context managed by the platform (e.g., lifetime

and internal state of GUI widgets, persistent state, etc.), as well as the complicated

interactions due to callbacks from the platform to the application. It is essential to

develop a system-level GUI-centric approach for testing for Android leaks, with se-

quences of GUI events being triggered to exhibit the leak symptoms. At present, no

such approach exists.

Our proposal. We propose a novel and comprehensive approach for testing for

resource leaks in Android software. This leak testing is similar to traditional GUI-

model-based testing. Finite state machines and other related GUI models have been

used in a number of testing techniques (e.g., [44,67,69,70,112,113]), including recent
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work on testing for Android software [1, 2, 11, 105, 124]. Given a GUI model, test

cases can be generated based on various coverage criteria (e.g., [69]). As with these

existing approaches, we consider GUI-model-based testing, but focused specifically

on coverage criteria aimed at resource leaks. We define the approach based on a

GUI model in which nodes represent Android activities and edges correspond to user-

generated and framework-generated events. The same approach can be used with

other GUI models for Android (e.g., event-flow graphs [4, 67]) in which paths in the

model correspond to event sequences.

The proposed coverage criteria are based on the notion of neutral cycles. A neutral

cycle is a sequence of GUI events that should have a “neutral” effect—that is, it should

not lead to increases in resource usage. Such sequences correspond to certain cycles

in the GUI model. Through multiple traversals of a neutral cycle (e.g., rotating

the screen multiple times; repeated switching between apps; repeatedly opening and

closing a file), a test case aims to expose leaks. This approach directly targets several

common leak patterns in Android applications, and successfully uncovers 18 resource

leak defects in a set of eight open-source Android applications used in our studies.

Contributions. The contributions of this work are:

• Test coverage criteria: We define several test coverage criteria based on different

categories of neutral cycles in the GUI model. This approach is informed by

knowledge of typical causes of resource leaks in Android software.

• Test generation and execution: We describe LeakDroid, a tool that generates

test cases to trigger repeated execution of neutral cycles. When the test cases

are executed, resource usage is monitored for suspicious behaviors.
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• Evaluation: We evaluate the approach on several Android applications. The

evaluation demonstrates that the proposed test generation effectively uncovers

a variety of resource leaks.

• Case studies: We present case studies of leak defects exposed by the approach.

This provides insights into the root causes of these leaks, which may be useful

for future work on testing and debugging of Android software.

These contributions are in the emerging and important area of software testing for

mobile devices. The proposed testing approach adds to a growing body of research on

improving the reliability and performance of Android applications. The experimental

evaluation and case studies contribute to better understanding of certain classes of

defects in such applications, and highlight open problems for future investigations.

The work described in this chapter first appeared in [122].

4.1 Background

4.1.1 Android Activities

An Android activity is an application component that manages a hierarchy of

GUI widgets and uses them to interact with the user. An activity has a well-defined

lifecycle, and developers can define callback methods to handle different stages of this

lifecycle (Figure 4.1). When an activity is started, onCreate is called on it by the

Android runtime. The activity becomes ready to terminate after onDestroy is called

on it. The loop defined by onStart and onStop is the visible lifetime. Between calls

to these two callback methods, the activity is visible to users. Finally, the innermost

loop onResume/onPause defines the foreground lifetime, in which the activity is on

the foreground and can interact with the user. A resource leak can be introduced
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onCreate()

onStart() onResume() onPause() onStop()

onDestroy()

Activity Launched

Activity

Running

Activity Shutdown

onRestart()

Figure 4.1: Activity lifecycle.

if a certain resource is allocated at the beginning of a lifetime (e.g., in onCreate)

but not reclaimed at the end (e.g., in onDestroy). Thus, one desirable property of

a test generation strategy is to cover these three pairs of lifecycle callback methods,

especially because prior studies of Android applications [51] indicate that defects are

often caused by incorrect handling of the activity lifecycle. An application usually

has several activities, and transitions between them are triggered through GUI events.

When an application is launched, a start activity is first displayed.

Example. Figure 4.2(a) shows ChooseFileActivity in the APV PDF viewer applica-

tion [7], displayed when the application is launched. The activity shows a list of files

and folders. A PDF file can be selected by tapping on the corresponding list item,

and the file is displayed in OpenFileActivity as shown in Figure 4.2(b). These two

activities correspond to two different states of the application; each has its own visi-

ble GUI elements and allowed GUI events. The reverse transition occurs through the

hardware BACK button. This transition closes the file and returns to the previous
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(a) (b) (c)

Figure 4.2: APV application: (a) ChooseFileActivity lists files and folders. (b)
OpenFileActivity displays the selected PDF file. (c) Native memory usage before
and after fixing the leak.

screen. The sequence of operations that opens a file and then closes it is expected

to have a “neutral” effect on resource usage, and is an example of a neutral cycle.

Repeated execution of this cycle normally should not lead to a sustained pattern of

resource usage growth.

When executing an automated test case that repeatedly exercises these two tran-

sitions (selecting a file and then pressing the BACK button), we observed that the

native memory usage increases significantly and ultimately leads to a crash. After

examining the application code, we determined that certain amount of native memory

is allocated during the initialization of OpenFileActivity and freed when the PDF

file is closed, via a call to a native method freeMemory. However, freeMemory does not

free all allocated memory, which results in a memory leak. In fact, in a later version

of the application, the developers checked in a fix for this issue. The native memory

consumption before and after this fix are shown in Figure 4.2(c); the x-axis shows

the number of repetitions of the neutral cycle.
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Figure 4.3: A subset of the GUI model for APV.

4.1.2 Leak Testing with a GUI Model

Following a large body of work on GUI-model-based testing [1, 2, 11, 44, 67, 69,

70, 105, 112, 113, 124], the starting point of our approach is a model of the Android

application’s GUI. To focus the presentation, we discuss one particular kind of model.

However, the notion of neutral cycles and the coverage criteria based on them should

be easily applicable to other GUI models (e.g., [4, 67]), where there is a natural

correspondence between paths in the model and sequences of events. A partial GUI

model for APV is shown in Figure 4.3. The figure shows only a subset of GUI states

and transitions, as needed for explanation purposes.

The models we discuss are directed graphs, with one node per activity, and with

edges representing transitions triggered by GUI events. The set of nodes is de-

fined by the set of application classes that subclass (directly or transitively) class

android.app.Activity: each such class is a node in the model. In addition to tra-

ditional events, the model should capture Android-specific events. For example, a

user can press the hardware MENU button and then select a menu item from a list

specific to the current activity. In Figure 4.3, edges labeled with MENU: represent
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such events; for example, MENU:About corresponds to choosing the “About” menu

item. As another example, the hardware BACK button can be used to destroy the

current activity and to transition to another one. (Although the programmer can

choose to override this BACK button behavior with application-specific logic.) In

addition to such application-specific events, several important GUI events are defined

by the platform and not by the application:

ROTATE events. When the user rotates the screen, the current activity is recreated

with a different orientation. In the model this event is represented by a self-transition

labeled with ROTATE. A rotation event is important for testing because it covers the

onCreate/onDestroy pair in the activity lifecycle from Figure 4.1. It is well known

that repeated execution of this pair of methods can leak activity objects (instances of

android.app.Activity), GUI widget objects (instances of android.view.View), visual

resources (instances of android.graphics.drawable.Drawable) such as bitmaps, and

other categories of resources [33,102]. To simplify Figure 4.3, only the ROTATE edge

for n1 is shown; both n2 and n3 have similar edges.

HOME events. When the user presses the hardware HOME button, the application

is hidden. The launcher, a special application to allow the user to launch any appli-

cation, is then brought to the foreground. For testing purposes, we are interested in

the scenario where the original application is immediately selected to be reactivated.

Edge HOME in Figure 4.3 represents pressing HOME and then going back to the

same application. (A similar self-edge exists for each other node in the model.) An-

other situation with behavior equivalent to a HOME event is when the user receives

a phone call while the application is active; once the phone call is completed, the
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application is reactivated. A HOME transition corresponds to the onStart/onStop

loop in Figure 4.1 and could be considered for coverage during testing.

POWER events. The hardware POWER button puts the device in a low-power

state. In this case, onPause is called on the current activity. When the button is

pressed again and the screen is unlocked, the activity becomes active and its onResume

method is called. Edge POWER in Figure 4.3 represents this sequence of operations.

The same behavior and callbacks are observed in other scenarios unrelated to power

usage—e.g., when an activity is partially blocked by a popup dialog. A testing strat-

egy could consider coverage of POWER transitions.

Sensor events. The platform can generate other events due to user actions. For

example, an accelerometer can trigger events because of shaking or tilting motions.

More generally, acceleration forces and rotational forces can be sensed by accelerom-

eters, gravity sensors, gyroscopes, and rotational vector sensors [84]. These sensor

events are GUI events triggered by the user, and they can activate interesting behav-

iors. Our current approach does not include these events, but can be easily extended

to consider them as well.

4.1.3 Obtaining GUI Models

Various reverse-engineering techniques (e.g., [11, 44, 68, 70, 124]) can be used to

automatically construct GUI models. One example is AndroidRipper [1, 2, 107], a

tool to perform GUI reverse engineering for Android applications. Its implementation

uses the Robotium testing framework [92] to systematically explore the GUI. At each

GUI state, the tool examines the run-time GUI widgets and the events that can be

fired upon them. The models produced by the tool are very detailed. For example, a
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MENU transition is represented by two edges, one for pressing the hardware MENU

button and another for choosing a menu item (e.g., “About”). As another illustration

of this level of detail, the same activity may be represented by many states in the

model. For example, there are many possible lists of files/folders that can be displayed

by activity ChooseFileActivity shown in Figure 4.2(a), by following the “parent

folder” list item (labeled with “..” in the figure), or another list item representing

a sub-folder. Each such file/folder list would be represented by a different state,

resulting in a very large model.

To reduce model size and the number of generated test cases, we chose to use

an abstracted model with one-to-one correspondence between activities and model

states. For our experiments these models were created manually after examining the

output of AndroidRipper and the source code of the application. We also added

HOME and POWER transitions, which were not captured by AndroidRipper. It

was an intentional decision not to focus on fully automating the model construction

in this work, but instead focus on evaluating the model-based coverage criteria and

showing that they are indeed useful for exposing leak defects. The next chapter

describes a static analysis that provides essential building blocks for automated model

construction.

4.2 Generation and Execution of Test Cases

The testing approach is based on a set of test coverage criteria. Each criterion

is aimed at a particular category of neutral cycles in the model of the application’s

GUI. Note that we expect this kind of leak testing to be performed after—and be

complementary to—traditional functional testing during which high block/branch
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coverage is achieved. Thus, we focus specifically on coverage of repeated behavior

that may be related to leaks.

4.2.1 Test Coverage Criteria

To illustrate a coverage criterion, consider the ROTATE transition shown in Fig-

ure 4.3. In general, for each state ni in the model, there is a self-transition represent-

ing a ROTATE event. We can define the following coverage criterion: for each state

ni, execute at least one test case that corresponds to a path (s, . . . , ni, ni, . . . , ni).

Here s is the start state, prefix (s, . . . , ni) represents a cycle-free path, and suffix

(ni, ni, . . . , ni) contains only ROTATE transitions. This suffix corresponds to k repe-

titions of the neutral cycle ni → ni. The motivation for this coverage is clear: resource

usage should not increase when the screen is rotated repeatedly [33], even for large k.

Executions of this cycle will trigger repeated onCreate/onDestroy lifecycle callbacks

(recall Figure 4.1). As mentioned earlier, resource leaks often occur because of defects

related to lifecycle management. We have seen a number of examples of this pattern

in our studies.

Application-independent cycles. One category of cycles to be covered are those

defined by ROTATE, HOME, and POWER events—i.e., events defined by the plat-

form, not by the application. An example of a ROTATE-based coverage was given

above. Similar coverage can be defined for HOME cycles (to trigger repeated onStart/

onStop) and POWER cycles (for repeated onPause/onResume). Note that even though

repeated ROTATE events also result in repeated start/stop and pause/resume, they

do not necessarily expose leaks related to stopping or pausing an activity: because

77



ROTATE destroys the activity, it may release resources that are leaked by onStop or

onPause. We have observed this situation in our studies.

Cycles with BACK transitions. The coverage criteria described above target only

the activity that is currently interacting with the user. Cycles involving the hardware

BACK button involve multiple activities, and present another target for coverage.

For each BACK transition ni → nj, we can execute a path (s, . . . , (nj, . . . , ni)
k, nj).

Here the k transitions from ni to nj are done with the BACK button, and the shortest

path from nj to ni is taken each time to reach the BACK edge. In our experience,

cycle (nj, . . . , ni, nj) is invariably a neutral cycle: resource usage growth over multiple

repetitions is unexpected and suspicious. Coverage of cycles involving BACK edges

may expose leaks that depend on the interplay among several activities. For example,

we have observed cases where coverage of single-activity cycles (e.g., ROTATE cycles)

does not expose a leak, but coverage of cycles with BACK transitions triggers the

leaking behavior.

Application-specific neutral operations. We also consider cycles involving pairs

of operations that “neutralize” each other. For example, node n2 in Figure 4.3 has

two self-transitions “zoom in” and “zoom out”, triggered by two of the buttons shown

at the bottom of Figure 4.2(b). The zooming-in operation, followed by the zooming-

out one, should have a neutral effect, and a neutral cycle can be defined with these

two operations. Other examples include connecting to/disconnecting from a server,

opening/closing a file, adding an email account and then deleting it, etc. In addition,

a single operation that only refreshes the GUI state of an activity (e.g., refreshing a

list of email messages) should have neutral effect on resource usage.
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Test case context. For a neutral cycle (ni, . . . , ni), any executable test case must

contain a prefix path (s, . . . , ni) where s is the start state. How should this prefix

be chosen? In our current approach, we choose the shortest path from s to ni.

However, context-sensitive variations of the coverage could also be defined, where

different execution contexts for the neutral cycle (i.e., different prefix paths leading

to ni) need to be covered. Making such choices is very similar to defining different

calling contexts for functions in code analysis and testing, and presents interesting

opportunities for future work.

4.2.2 Test Generation and Execution

Given a GUI model and a coverage goal, test generation can be achieved by

traversing paths in the model. We have developed LeakDroid, a tool that implements

this approach. In the generated test cases GUI events are triggered with the help

of the Robotium testing framework [92]. A test case is shown in Figure 4.4. It

corresponds to a path (s = n1, (n2, n3)k, n2) in the GUI model from Figure 4.3, and

covers the BACK edge from n3 to n2. The start state is n1. Line 4 makes an API

call to select the third list item, assuming that the item represents a PDF file, and

makes the transition to state n2. The loop at lines 6–9 executes k repetitions of

a neutral cycle that involves the BACK edge n3 → n2. The call at line 7 selects

a menu item, and the call at line 8 presses the BACK button. The API calls for

GUI events are generated automatically by LeakDroid based on the given model and

the coverage goal. The tool input also includes information about application-specific

pairs of operations with neutral effects (e.g., open/close) and single neutral operations

(e.g., refresh). Data-specific elements (e.g., choosing the third list item at line 4) are
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1 // @PreCondition

2 // A PDF file at position 3 of list

3 void test_n3_BACK_n2() {

4 robotium.clickInList(3); // n1 -> n2

5 // Cycle: n2 -> n3 -> n2 -> ...

6 for (int i = 0; i < k; i++) {

7 robotium.clickOnMenuItem("About");

8 robotium.goBack();

9 }

10 }

Figure 4.4: An example of a generated test case.

subsequently provided by the tester. We found that the manual effort for this is

trivial—once the Robotium calls are generated automatically, test setup (e.g., setting

up an SSH host name at a specific position in the host list, or a file name at a certain

position in the file list) is very easy.

During test case execution, various resources can be monitored. Currently we

collect the following measurements.

Java heap memory. This is the memory space used to store Java objects. Existing

memory leak detection techniques for Java typically focus on leaks in this memory

space. The space is automatically managed by the garbage collector, so there can

be leaks only when unused objects are unnecessarily referenced. Note that some

resource leaks (e.g., leaking of database Cursor objects) also exhibit usage growth in

this memory space.

Native memory. This memory space is used by native code, and is made accessible

to Java code via JNI (Java Native Interface) calls. It requires explicit memory man-

agement by the developers as in programs written in non-garbage-collected languages

such as C/C++, and thus could suffer from all well-known memory-related defects in

those languages (e.g., dangling pointers, double-free errors). For example, the native
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recycle method of the Bitmap class has to be explicitly called to prevent leaking of

native bitmap objects. This memory space is particularly important to monitor as

many Android applications make heavy use of native code and thus native memory.

Binders. Binders provide an efficient inter-process communication mechanism in

Android. In essence, a binder is the core component of a high-performance remote

procedure call (RPC) mechanism directly supported by the underlying Linux kernel

in the Android operating system. Usage of binders requires creation of global JNI

references, and these references are made visible to the garbage collector. Unneces-

sarily keeping these references could lead to leaking of other potentially large Java

objects. The global JNI references are deleted in native methods called by the final-

izer of android.os.Binder, so the number of Binder instances is a good indicator of

whether unnecessary JNI references are kept. There is likely to be an underlying soft-

ware defect if this number grows significantly, and we collect measurements of it to

identify binder leaks. Such leaks are distinguished from memory leaks because they

are related to an Android-specific feature and behavior, which allows more precise

diagnosis of the root problem.

Threads. Threads are usually created to perform time-consuming operations in a

GUI application to maintain good responsiveness. For example, the e-book reader

VuDroid [110] creates new threads to compute rendering data for requested files. A

buggy implementation could hang thread execution, while new threads are being

created. A sustained growth in the number of active threads in an application is

an indication of software defects, and thus the proposed testing approach collects

measurements of the number of active threads.
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All of the discussed measurements can be easily collected via system services

provided by the Android platform, and does not require any code changes or system

modifications. To reduce the running time for test execution, we stop a test case

early if it does not exhibit a pattern of growth. Various techniques can be used

to decide whether a test case should be stopped. Currently we use a technique

which monitors resource usage for 500 repetitions of the neutral cycle, performs linear

regression on the measurements, and stops the test case if the rate of growth is below a

certain threshold (e.g., less than 5% memory growth per hour). Although simple, this

technique stops early the majority of test cases (76% in our experiments), allowing

testing resources to be focused on a smaller set of test cases with non-trivial growth

in resource usage. Each such “suspicious” test case is executed until it fails or until a

predefined limit on the number of neutral cycle repetitions is reached. An interesting

observation is that some non-failing test cases exhibit slow-leak behavior: there is a

pattern of slow growth that may indicate an underlying defect. Our current reporting

and evaluation focus only on failing test cases, in which a defect is clearly manifested;

slow leaks will be investigated in future work.

4.2.3 Diagnosis of Failing Test Cases

When a test case fails, various techniques can be used to diagnose the root cause.

For example, heap snapshots and object reference graphs derived from them are

available in a number of tools (e.g., [38]). Information derived from such graphs is

often analyzed manually to understand memory usage and diagnose memory leaks

in Android applications [71]. Various automated analyses of heap graphs have also

been proposed (e.g., [58,74]). Such analyses can potentially be extended to reflect the
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structure of the generated test cases. For example, a crashing test case that exhibits

memory growth can be re-executed with a small number n of repetitions of the neutral

cycle. As the test case is running, a heap snapshot is taken after each cycle repetition.

After re-execution, n heap snapshots H1, H2, . . . , Hn are available, and n − 1 heap

differences ∆i = Hi+1 − Hi can be computed and analyzed. Our initial experience

with manually applying this approach was very promising, and helped to identify the

causes of all memory-growth test cases we observed. The diagnosis was performed

with the help of the MAT memory analysis tool [38] (which is commonly used by

Android developers [33]), followed by code inspection. An interesting question for

future work is how to apply this approach to automated heap-differencing techniques

(e.g., [58, 74]) and how to generalize it for analysis of native memory and resources

other than memory.

4.3 Evaluation

We evaluated the proposed testing approach on eight open-source Android ap-

plications. The test cases were generated with our LeakDroid tool. We debugged

all failing test cases and identified the underlying defects. All experiments were per-

formed in the standard Android emulator from the Android SDK. The experimental

subjects, their GUI models, the test cases, the description of identified defects, and the

source code of LeakDroid are all publicly available at http://www.cse.ohio-state.

edu/presto/software.

4.3.1 Study Subjects

We used search engines to establish a set of potential study subjects. The subjects

were restricted to open-source Android applications; however, the proposed approach

83

http://www.cse.ohio-state.edu/presto/software
http://www.cse.ohio-state.edu/presto/software


Application Version Activities/ Transitions Classes Test Memory Thread Binder Unique
States Cases Leaks Leaks Leaks Defects

APV r131 4 16 56 22 1 0 0 1
astrid cb66457 11 27 481 40 3 0 0 1

ConnectBot e63ffdd 9 27 301 32 3 0 10 3
FBReader a53ed81 22 31 757 30 6 0 0 2

KeePassDroid 085f2d8 7 30 126 33 4 0 1 4
K9 v0.114 15 45 418 57 4 0 16 4

VLC dd3d61f 8 22 176 32 4 0 0 2
VuDroid r51 3 11 67 17 0 2 0 1

Table 4.1: Characteristics of study subjects, and experimental results.

can be easily applied to applications without publicly accessible source code. Appli-

cations that were less popular (e.g., with only a few installs) or not well-maintained

(e.g., applications without a bug database, with only a few commits) were excluded

from consideration. For an initial set of candidate applications, we searched their

bug databases and code commit log messages. Search terms such as “leaks” and “out

of memory error” were used to identify application versions that may contain leak

defects. During or after this process, we did not examine carefully the bug reports

and code commits, in order to ensure that the test cases generated by our approach

were not biased toward any particular existing faults.

Characteristics of the study subjects are shown in the first five columns of Ta-

ble 4.1. The number of application classes that subclass android.app.Activity is

shown in column “Activities/States”. Even for applications with only a few activities

(e.g., APV), there could be several dozen other application classes to provide support-

ing functionality for the activities, which can lead to complicated run-time behav-

ior. Each activity shown in “Activities/States” corresponds to a state in the GUI

model. Column “Transitions” shows the number of edges in the model. This number

does not include implicit application-independent self-transitions (that is, ROTATE,
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HOME, and POWER transitions). The applications represent a variety of domains:

e-book/PDF readers (APV, FBReader, VuDroid), to-do list management tool (astrid),

email client (K9), SSH client (ConnectBot), password manager (KeePassDroid), and

multimedia player (VLC).

4.3.2 Experimental Methodology

For each application, test cases were generated (as described in Section 4.2.2) to

achieve complete coverage with respect to the test coverage criteria defined earlier.

Since ROTATE/HOME/POWER transitions exist for each state in the GUI model,

the test cases are guaranteed to cover each activity in the application. Next, all gen-

erated test cases were executed as described in Section 4.2.2. During execution, usage

measurements for various resources were collected for detection of growth patterns.

When a test case fails, these measurements provide some initial clues as to what type

of resource is leaking and what could be the underlying defect. For each failing test

case, we investigated the application (using code inspection and a memory analysis

tool) to determine the root cause of the failure and whether this cause was indeed

related to resource leaks. Details of this investigation are presented in Section 4.4.

On average the execution time for a failing test case is less than two hours, with

the majority of test cases failing in less than an hour. These times are artificially

inflated due to a particular deficiency of our initial implementation. When firing an

event through a Robotium call (recall Figure 4.4), it is necessary to wait until the

effects of the event are processed by the application and shown in the GUI, so that the

next event can be fired on the updated GUI. In our current prototype implementation

we automatically introduce a large delay after each event in the test case. It is an
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interesting open problem how to automatically fine-tune the durations of these delays

in order to reduce test execution time; we plan to investigate this problem in the near

future.

4.3.3 Detection of Leak Defects

The rest of Table 4.1 shows measurements to demonstrate the effectiveness of the

coverage criteria in detecting leak-related defects. Shown in order are the number

of generated test cases, the number of failing test cases due to memory leaks, the

number of failing test cases due to thread leaks, the number of failing test cases due

to binder leaks, and the number of unique leak defects exposed by these failing tests

(and confirmed by us through investigation of the source code).

Column “Test Cases” shows how many test cases were generated based on the

coverage criteria described earlier. The test cases tend to be relatively small: on

average, the number of Robotium calls per test case (i.e., the number of events fired)

was 4.04. As discussed in Section 4.2.2, some of these test cases were filtered out

early in their execution: we used a filtering approach to detect growth patterns and

stop test cases that are not likely to cause sustained growth in resource usage. This

approach was quite effective, and only 24% of the generated test cases needed to be

executed further after the filtering step. Test cases that cover the POWER events are

not included in these measurements, because we did not observe any resource usage

growth related to these events.

A test case is included in column “Memory Leaks” when a crash is caused by

a memory leak that leads to an out-of-memory error. It can be a memory leak in

either the managed heap or the native heap. These memory leaks could have various
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underlying reasons, and some of them are related to inappropriate management of

resources—for example, leaking of bitmap objects, database cursors, and event lis-

teners. Some of these resources have memory budgets (e.g., bitmaps). Exceeding

the budget limit will immediately lead to an out-of-memory error, although there

could still be sufficient memory space left in the heap. Thus, it is important to force

immediate reclamation of such resources when they are no longer needed.

“Thread Leaks” refers to the test cases that have a large number (100 in our

experiments) of simultaneously active threads. It is our experience that an applica-

tion exhibiting such behavior is very likely to have a thread leak problem, and it is

unnecessary to wait until it exceeds the system-wide limit on the number of threads,

which is usually even larger (4096 for Android). In fact, such test cases could crash

very quickly when the amount of memory reachable from each newly-spawned thread

is substantial.

In the Android emulator, there is a system-wide limit on the maximum number of

global JNI references. When an application exceeds this limit, the emulator crashes.

Although this limit by default is not enabled on real Android devices, exceeding it

is still an indication of software defects. As discussed earlier (Section 4.2.2), usage

of binders requires creation of global JNI references. So, there will be a crash when

an application keeps creating new binder objects and maintains references to them.

Column “Binder Leaks” counts the number of failing test cases that fall into this

category.

The last column in the table shows the number of defects that are responsible for

the failing test cases. Details on some of these problems are presented shortly. Among

the 18 defects discovered, only 6 could be connected to existing bug reports and code
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commit logs; the remaining 12 were previously unknown. For the 6 defects related to

existing reports/commits, this relationship was established (by examining bug reports

and commit logs) only after the defects were uncovered by the generated test cases

and confirmed by code examination. The 18 discovered defects were exposed using

only a systematic model-based test generation approach, without any prior knowledge

of their symptoms and root causes.

Note that it is impossible to ascertain how many leak defects actually exist in the

studied applications. The vast majority of bug reports are vague and do not provide

enough information to construct an actual test case to reproduce the failure, or to

identify its root cause. Similarly, code commits typically have short and uninformative

commit messages, again without details on how to reproduce the incorrect behavior

being fixed. Only after generating our model-based test cases and debugging the

failing ones, we have been able to determine that some existing bug reports and code

commits are referring to the same defects.

4.3.4 Defect Detection for Coverage Criteria

We have defined and used several coverage criteria to target various types of neu-

tral cycles. To understand the leak detection capabilities of each kind of neutral

cycle, we categorized failing test cases based on the type of cycles they exercise. Fig-

ure 4.5 provides a summary of this study. The chart shows the numbers of failing test

cases that exercise a neutral cycle to cover ROTATE transitions, HOME transitions,

BACK transitions, and application-specific operations (a single neutral operation or

a pair of neutralizing operations). The last two categories of neutral cycles exhibit

the best ability to uncover leak defects. These cycles often involve both resource
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Figure 4.5: Failing test cases for each category of neutral cycles.

allocation and reclamation (reclamation could be missing if the application has a leak

defect). Application-independent cycles (i.e., cycles defined by ROTATE, HOME,

and POWER transitions) have weaker leak detection capabilities. As mentioned ear-

lier, test cases that exercise POWER transitions were excluded from the presented

measurements because they do not exhibit leaking behavior in any of the applications

we studied.

4.4 Case Studies

This section presents several case studies to demonstrate the resource leak prob-

lems we found in the studied applications. The leak problems were confirmed by

code fixes written either by the application developers or by the authors. The de-

tailed description of these defects can provide insights into possible new approaches

for detection, diagnosis, and prevention of leaks in Android applications.
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APV. As discussed earlier, there is a leak in native memory for APV. The application

crashes with a large native memory footprint due to incorrect implementation in

native memory reclamation. This crash is triggered by the neutral cycle n1 → n2 → n1

in Figure 4.3. This defect cannot be easily discovered: examining the Java source

code alone, the resource seems to be properly managed. It is also not easy to fix this

problem due to lack of heap profiling tools for the native memory. In fact, after we

discovered this defect during testing, we examined the code repository and observed

that it took the developers several revisions to fix this problem. As native code and

native memory are more heavily used in Android applications, compared to traditional

server and desktop Java applications, new testing and diagnostic tools/techniques

specifically targeting the usage of native memory are greatly needed for the Android

platform.

ConnectBot. SSH client ConnectBot has a defect related to leaking of event listener

objects. TerminalView represents the graphical interface of an SSH session, and it is

a listener for font size changes. When onStart of ConsoleActivity is called, a new

TerminalView is created and added to a container of listeners. However, it is never

removed from the container. When onStart is called multiple times on the same

ConsoleActivity object, TerminalView is leaked. One way to trigger this behavior

is to start ConsoleActivity first, and then repeatedly go to the HOME screen and

go back. Note that this leak cannot be triggered by rotation events, because a new

ConsoleActivity is created whenever rotation occurs. This is an example showing

why both ROTATE and HOME events should be considered for test coverage.

KeePassDroid. This password management tool saves user-provided login creden-

tials in a password-protected database file, so that users can access them with one
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master password. Multiple database files can be maintained. When the application is

first launched, it displays a list of database files in FileSelectActivity for the user to

choose. When a database file is selected, a query is launched to retrieve the informa-

tion in the file, and the result can be accessed through a Cursor object. The Cursor

is remembered in a container so that it can be synchronized with the activity (i.e., it

has the same lifecycle as the activity). The Cursor object is automatically cleaned up

when its managing activity is destroyed. However, when we keep the same instance of

FileSelectActivity alive, and come back to the selection list to select database files

repeatedly, multiple Cursor objects would be saved in FileSelectActivity. Several

crashing test cases are caused by this problem. A whole hierarchy of objects repre-

senting the query results are reachable from Cursor objects, leading to fast growth in

memory consumption. A similar problem was also found in the astrid application.

This is an important pattern to consider, because Android applications often interact

with the built-in SQLite database, and Cursor objects are used to access the results

of SQL queries. Testing the interactions between the application and the database is

an important consideration for Android software development.

K9. In K9, a popular email client, a leak was discovered when rotating the screen after

an email message is selected for display. Since it crashes after only a few repetitions

of the ROTATE neutral cycle, this is an example of a leak that can be easily observed

and thus cause negative user perception of the application. Heap snapshots suggest

that a large number of objects are kept alive through a few Thread objects. The

only code that creates threads is in MessageView, an activity that displays individual

email messages. The threads are executed with the help of a thread pool executor,

and because of this they are not explicitly started by calling start on them. In
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the standard library used by Android, a thread whose start method is never called

is guaranteed to be leaking due to complex interplay between threads and thread

groups. Since a leaking thread keep references to MessageView, a whole hierarchy

of GUI objects are kept alive, leading to a quick crash. A simple fix is to create a

Runnable object rather than a Thread object. Our understanding of the behavior of

Thread and ThreadGroup was also confirmed by Android platform developers.2 This is

an example where a seemingly-innocent mistake (using Thread instead of Runnable),

together with the unexpected behavior of the platform code, lead to problematic

behavior. In fact, we have seen other leaks in the platform’s management of resources

(e.g., binders), in which case the application code does not have any defects, but

still crashes. These observations highlight the need to repeatedly exercise resource-

management code during testing, in order to expose unexpected interactions with the

Android platform.

VLC. VLC is a popular cross-platform multimedia player. A leak was exposed when

screen rotation is performed multiple times on its AboutActivity. This activity is

implemented as a FragmentActivity, a new feature introduced in Android 4.0 and

ported back to earlier versions. A fragment activity can manage Fragments, more flex-

ible containers of GUI components. Fragment objects are created in AboutActivity

and registered with the platform. Heap snapshots indicate that many fragments are

kept alive. By default, the state of a FragmentActivity is (silently) saved and re-

stored by the platform. In particular, all registered fragments are saved in memory

before the activity is destroyed, and then restored from memory before it is recreated.

Because of this behavior, Fragment objects created inside AboutActivity can never

2http://groups.google.com/d/topic/android-platform/y3G7v_U-hvA/discussion
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be garbage collected. For the developers this is an unexpected change to the man-

agement of an activity’s lifetime, caused by this new Android feature. Subsequently

we discovered that a later version of VLC disabled this default save/restore (by over-

riding relevant callback methods), which fixed the leak. This defect illustrates how

new features introduced in the still-evolving Android platform can lead to defects due

to poor understanding, which in turn motivates the need for regression testing and

comprehensive strategies for test generation.

Application-specific neutral operations. We observed several examples where

a leak is triggered by a neutral cycle with an application-specific functionality. For

example, in the astrid task management application, database cursors are leaked

when the user changes the sort order of tasks, and then reverts back to the origi-

nal order. Similarly, adding and then removing a task causes a cursor leak. The

application-specific neutral cycles we consider for coverage are rather simple: they

either involve a pair of neutralizing operations (e.g., add/remove, open/close) or a

single operation that updates the displayed content (e.g., to refresh the current, un-

changed list of email messages in K9). Currently, these cycles are provided as input to

LeakDroid. Automatic identification of such cycles, and perhaps even static analysis

of their correctness with respect to leaks, are interesting problems for future work.

4.4.1 Discussion

Among the exposed defects, a diversity of resources are involved. Examples in-

clude not only traditional leaks such as memory leaks and thread leaks, but also

Android-specific leaks such as binder leaks. Even for defects that exhibit the same
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“out-of-memory error” symptom, the underlying relevant resources could be differ-

ent. Bitmaps, database cursors, and event listeners are some examples that fall into

this category. Leaks caused by defects inside the Android platform and the stan-

dard library were also uncovered. This experience suggests that the proposed testing

approach can effectively expose diverse resource leaks across a variety of applications.

Our experiments and case studies indicate that systematic model-based testing

for resource leaks in Android software can be done effectively. They also point to

interesting directions for future work. First, leak patterns based on neutral cycles

can be leveraged to develop automated leak diagnosis tools. Based on our experience,

we believe that a substantial part of the diagnosis process can be automated. It

is particularly useful to identify strong correlations between the number of executed

repetitions and the growth in the number of instances of certain classes. Allocation of

and references to instances of classes that exhibit such correlations are usually related

to the leak defects. Second, it is beneficial for understanding of resource usage/leaks to

have analysis techniques that can automatically identify methods related to resource

manipulation (e.g., allocation and reclamation). To achieve this goal, both static and

dynamic analyses techniques may have to be developed. Finally, it is important to

consider new mechanisms for prevention of resource leaks, with the help of better

software abstractions and patterns for resource management.

4.5 Summary

This chapter proposes a systematic and effective technique for testing of resource

leaks in Android applications. Neutral cycles—sequences of GUI events that should

not lead to increases in resource usage—are used to define test coverage criteria.
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Evaluation of this approach indicates that complicated and diverse resource leaks can

be exposed by the generated test cases. These promising initial results suggest that

such a testing technique is feasible and effective for detection of resource leak defects.

Our investigation also points to several important directions for future work, including

additional coverage criteria; better diagnosis techniques (e.g., by correlating repeated

behavior with heap growth); increased focus on analysis of native memory as well as

analysis of specific resources (e.g., database cursors, bitmaps); automated static or

dynamic discovery/analysis of code that allocates and reclaims important resources;

improved resource management through new software abstractions and patterns.
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CHAPTER 5: Static Reference Analysis for GUI Objects in
Android Software

Reference analysis for object-oriented languages [95] (also referred to as pointer

analysis) is a static analysis technique that models the flow of object references. It

has been studied extensively due to its essential role as a prerequisite for many other

static analyses. For example, interprocedural control-flow analysis for object-oriented

software requires information about the object references that can be observed at

polymorphic calls. Another typical example is data dependence analysis, which also

requires object reference information.

The previous chapter introduces a systematic testing strategy to uncover resource

leaks in Android applications. An important input to the approach is a GUI model

for the Android application under test. Constructing a model for an application

GUI is a reverse engineering problem. Reverse engineering of GUI models has been

studied by others (e.g., [44, 68, 70]) and has been applied to Android applications

(e.g., [1, 2, 4, 11, 107, 124, 130]). However, all of these existing approaches rely fully

or partially on a dynamic program analysis that cannot cover all possible program

executions and thus the constructed model is inevitably incomplete. Therefore, a fully

static approach for GUI model construction is greatly desired. One critical building

block for such a static approach is a reference analysis for GUI objects in an Android

application.
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Existing reference analyses cannot be applied directly to Android applications. Al-

though the underlying language is Java, Android software is built using a component-

based approach where the platform manages the lifetime, behavior, and data of appli-

cation components. Furthermore, the software is event-driven: an Android applica-

tion is driven by a graphical user interface (GUI), with GUI-related objects responding

to user actions (e.g., pressing a button). The set of GUI objects and the event han-

dlers associated with them ultimately determine the possible flow of control and data

in the application. To the best of our knowledge, at present there does not exist any

work on static analyses to model the details of this GUI-driven control/data flow.

Proposed analysis We propose the first static analysis to model the set of GUI-

related Android objects, their flow through the application, and their interactions

with each other via the abstractions defined by the Android platform. A number of

features make this analysis different from a traditional reference analysis. First, the

creation of GUI objects is often implicit, based on external declarative information.

The correct modeling of this creation is essential for the proposed analysis. Second,

there is a hierarchical structure of GUI objects; this structure affects the run-time

behavior and must be modeled statically. In addition, GUI objects are typically

accessed via object ids, which requires tracking of such ids and modeling of the effects

of their use. Finally, it is critical to track the association between a GUI object and

the event handlers that respond to user actions on this object.

Motivation The creation, propagation, and interactions of GUI-related objects di-

rectly affect the application’s run-time behavior. They define the control flow, and in

particular the possible GUI events that drive the application, and the invocations of

handlers for these events. They also determine aspects of the data flow: for example,
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text entered by the user (e.g., a password) is obtained with the help of a particular

GUI object and flows from it, via the event handler, to the rest of the application.

Static analysis to model this control/data flow is foundational for compiler analyses,

instrumentation for event/interaction profiling, static error checking, security analy-

sis, test generation, and automated debugging. A body of existing work can directly

benefit from our analysis, including static error checking (e.g., [86,87,129]), run-time

exploration for dynamic analyses for profiling, energy analysis, security analysis, re-

sponsiveness analysis, and systematic testing (e.g., [2,11,40,55,85,111,122,123]), static

security analysis (e.g., [10, 18,20,42,43,82]), and reverse engineering (e.g., [124]).

Contributions The contributions of this work are

• A formal semantics for GUI-related Android constructs. This semantics pro-

vides a solid foundation for the development of this and other analysis algo-

rithms.

• A constraint-based static analysis. The analysis employs a constraint graph

to model the flow of GUI-related objects, the hierarchical structure of these

objects, and the effects of relevant Android operations.

• An experimental evaluation on real-world Android applications. The results

strongly suggest that the analysis achieves high precision with low cost.

These contributions provide a key component for an analysis infrastructure to

be used by compile-time analysis researchers in the increasingly important area of

Android software. An earlier version of this work appeared in [94].

98



5.1 Background and Example

Figure 5.1 shows an example derived from ConnectBot [26], an SSH client with

more than one million installations according to the Google Play Store statistics.

ConsoleActivity defines an activity. An activity class is an application class that is

a direct or transitive subclass of android.app.Activity. Activity objects (referred

to as “activities”) are the core application components, and they are managed by the

platform through various callbacks. When an activity is started (by another activity

or by an external application), the platform creates the activity object and invokes

the onCreate callback method defined at lines 8–16.

An activity presents to the user a window with GUI elements, defined with the

help of views. A view class v is a direct or transitive subclass of android.view.View.

Instances of such classes represent GUI widgets that can be observed and manipulated

by the user (e.g., buttons), as well as logical groups of such objects. A developer may

(but does not have to) introduce application-specific view classes. The example uses

standard view classes ViewFlipper, ImageView, and RelativeLayout, as well as an

application-defined view class TerminalView.

ImageView displays an image; in this example, it is used to show the icon of an

ESC button for an SSH terminal. RelativeLayout is a container for a set of children

views, and it itself is not directly visible to the user. ViewFlipper is a container

that can animate between several children views, by flipping between children (e.g.,

flipping could happen when the user swipes across the touchscreen). TerminalView

is an application class providing the GUI for an SSH terminal window; the source

code of this class is not shown in the figure. The two XML files act console and
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1 class ConsoleActivity extends Activity {

2 ViewFlipper flip;

3 View findCurrentView(int a) {

4 ViewFlipper b = this.flip;

5 View c = b.getCurrentView(); // FindView

6 View d = c.findViewById(a); // FindView

7 return d; }

8 void onCreate() {

9 this.setContentView(R.layout.act_console); // Inflate

10 View e = this.findViewById(R.id.console_flip); // FindView

11 ViewFlipper f = (ViewFlipper) e;

12 this.flip = f;

13 View g = this.findViewById(R.id.button_esc); // FindView

14 ImageView h = (ImageView) g;

15 EscapeButtonListener j = new EscapeButtonListener(this);

16 h.setOnClickListener(j); // SetListener }

17 void addNewTerminalView(TerminalBridge bridge) {

18 LayoutInflater inflater = ... // helper object

19 View k = inflater.inflate(R.layout.item_terminal); // Inflate

20 RelativeLayout m = (RelativeLayout) k;

21 TerminalView n = new TerminalView(bridge);

22 n.setId(R.id.console_flip); // SetId

23 m.addView(n); // AddView

24 ViewFlipper p = this.flip;

25 p.addView(m); // AddView } }

26 class EscapeButtonListener implements OnClickListener {

27 ConsoleActivity cact;

28 EscapeButtonListener(ConsoleActivity q) {

29 this.cact = q; }

30 void onClick(View r) {

31 ConsoleActivity s = this.cact;

32 View t = s.findCurrentView(R.id.console_flip);

33 TerminalView v = (TerminalView) t;

34 // send ESC key to terminal associated with v } }

act_console.xml:

<RelativeLayout ... >

<ViewFlipper android:id="@+id/console_flip" ... />

<RelativeLayout android:id="@+id/keyboard_group" ... >

<ImageView android:id="@+id/button_esc" ... />

...

</RelativeLayout>

...

</RelativeLayout>

item_terminal.xml

<RelativeLayout ... >

<TextView android:id="@+id/terminal_overlay" ... />

</RelativeLayout>

Figure 5.1: Example based on ConnectBot [26].
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item terminal shown at the bottom of the figure define hierarchies of GUI widgets

based on this set of classes.

Layouts Line 9 reads a GUI layout definition from XML file act console and

instantiates a hierarchy of views. Android best practices suggest that the definition

of the visual layout be separated from the code. A layout definition describes a

hierarchical structure of views. Using standard tools, these definitions are compiled

to Java code. For each layout, there is a unique integer id defined by a final static

field in an automatically-generated class R.layout (e.g., R.layout.act console and

R.layout.item terminal). The values of these ids are used as parameters to several

layout inflaters. A layout inflater is a method that, given a layout id, “inflates” the

definition to a view hierarchy. In general, the parameter of an inflater call can be an

integer variable that is (transitively) assigned a layout id. In the example, the inflater

call at line 9 associates the new hierarchy with the activity, while the inflater call at

line 19 just returns the root view.

A layout definition describes a tree. An inner node represents a container view

(e.g., RelativeLayout), which is a wrapper around children views. The leaf nodes

represent basic GUI components (e.g., ImageView and TextView). Some nodes may

have string ids. For each such view id in the definition there is a corresponding integer

field in class R.id: for example, fields R.id.console flip, R.id.keyboard group,

and R.id.button esc correspond to the view ids defined in act console.

Operations on views In onCreate, lines 10 and 13 contain find-view calls. Such

calls use a view id to search for a view in a given hierarchy—in this case, the hierarchy

associated with the activity. In addition, line 16 contains a set-listener call, which

associates a listener (i.e., handler) of click events with the ImageView representing an
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ESC button. The handling of a click event (method onClick at lines 30–34) will be

discussed shortly. Both find-view operations and set-listener operations are modeled

by our analysis, in order to represent statically the propagation of views and the

control/data flow due to event handlers for these views.

Method addNewTerminalView (lines 17–25) updates the GUI when a new SSH ter-

minal is opened. Calls to this method occur in the rest of the code of ConsoleActivity;

for brevity, this code is not shown in the example. The call at line 19 inflates a layout

defined by XML file item terminal and returns the root RelativeLayout. Line 21

shows a programmatically-created instance of TerminalView. This class (a subclass of

View) is not defined or instantiated by the Android platform but rather by the appli-

cation. At line 22, the id is explicitly set through a set-id operation, and at line 23 the

new terminal view becomes a child of the inflated RelativeLayout through an add-

child operation. At line 25 the RelativeLayout becomes a child of the ViewFlipper

due to another add-child operation. As several SSH terminals are opened, each call to

addNewTerminalView extends the hierarchy rooted at the ViewFlipper with a new

subtree of widgets. The flipper allows the user to flip through the multiple terminals,

using swiping motions.

This method illustrates several challenges for the proposed static analysis. First,

the program can freely mix inflated views and programmatically-created views. Sec-

ond, the parent-child relationships between views can be established either through

inflation or through explicit add-child operations (lines 23 and 25). Similarly, view

ids can be set during inflation or via set-id calls (line 22). Changes to children and

ids can in turn affect find-view operations. Consider the call at line 32 in event

handler onClick, which handles a click event on the ESC button defined by view
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id button esc. This handler calls helper method findCurrentView(int), which

queries the flipper about which of its children is currently visible; this is done by

the find-view call at line 5. These children are the RelativeLayouts created at line

19 and added as children at line 25; the effects of these two operations need to be

modeled properly in order to handle correctly the call at line 5. Furthermore, another

find-view call at line 6 searches the hierarchy rooted at the RelativeLayout for a

view with the given id. This behavior is affected by the set-id operation at line 22,

the add-child operation at line 23, and the interprocedural propagation of the view

id to parameter a.

Event handlers GUI objects in the application can be associated with event

handlers. Consider the ESC button, defined by view id button esc and represented

at run time by an instance of ImageView. This instance is created by the inflater call

at line 9 and retrieved by the find-view call at line 13. Click events on this GUI widget

are handled by the listener object created at line 15. This listener is registered with

the GUI object through the set-listener call at line 16. The event handling happens

in method onClick (lines 30–34). This method’s signature is defined in interface

android.view.View.OnClickListener and is used for the callback methods invoked

by the Android platform when a click event occurs. A parameter of the callback is the

view r on which the event occurred—in this case, the ImageView for the ESC button.

This example illustrates that a static analysis of GUI objects should account for (1)

the association between a GUI object and its listener objects, and (2) the implicit

flow of the GUI object as a parameter of callbacks to event handler methods.

Additional Android constructs There are additional Android constructs that

are not demonstrated in the example shown in Figure 5.1. A menu displays items of
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choices when user presses the MENU button, or long clicks on a view. A list defines

a sequence of data items to be shown. A dialog is used to display short messages or

ask the user a brief question. All of these are frequently used GUI features used in

real-world applications. Their semantics, together with propagation of related GUI

object references, should be modeled as well.

5.2 Semantics of Relevant Android Constructs

The creation and propagation of views, together with their interactions with ac-

tivities and listeners, define a critical component of the run-time behavior of Android

applications. These interactions affect the control flow—for example, they define the

set of possible GUI events at each moment of the execution (based on the avail-

able views), the event-handling code for them, and the effects of this handling (e.g.,

starting new activities, sending data over the network, etc.). The data flow is also

directly affected: for example, text entered by the user is associated with a particular

view and flows from that view to the corresponding listener, and from there to other

components of the application.

Static analysis to model this run-time behavior is highly desirable as foundation for

compiler analyses, instrumentation for profiling of GUI-driven events and interactions,

static error checking, security analysis, test generation, and automated debugging.

To the best of our knowledge, at present there does not exist such a static analysis.

Our goal is to develop semantic foundations and analysis algorithms for solving this

problem. We propose a principled solution, starting with a definition of the semantics

of relevant Android constructs (this section) and using it to define a constraint-based

analysis for it (next section).
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5.2.1 Syntax and Semantics of JLite

This section describes JLite, a subset of Java that contains all essential language

features needed to present the proposed reference analysis for Android software.

Syntactic entities A program contains a set of Java classes. (“Class” will be

used to refer to both classes and interfaces.) The following syntactic categories are

considered: classes c ∈ Class , methods and constructors m ∈ Method , fields f ∈

Field , statements s ∈ Stmt , and locals/formals x, y, z, p, r ∈ Var . Each method m

has a name, formal parameters thism and pm, and an artificial return variable rm.

Each method’s body is a statement s, defined by s ::= s1; s2 | x := new c | x :=

y | x := y.f | x.f := y | z := x.m(y). In a minor abuse of notation, here c and m

denote the name of class c and method m. Since we are interested in an analysis

that abstracts away the intraprocedural control flow—as typically done in reference

analysis for Java—conditional statements and loops are omitted. Each variable is

of reference type. An assignment to return variable rm represents a possible return

value of method m.

Operational semantics Figure 5.2 shows the domains and functions used to

define the semantics of JLite. A heap location ξc is labeled with the class c it in-

stantiates. An environment ρ defines values for locals, formals, and return variables;

the values are heap locations. For simplicity of presentation, we formulate the seman-

tics in the absence of recursion (i.e., the elements of Var provide unique names for

stack locations), and we also assume that all stack and heap locations are properly

initialized before being read. A heap η represents the values of fields of heap objects.

Semantic function E : Expr → Env × Heap → Loc provides the meaning of an

expression e ∈ Expr . In the rule for EJnew cK, ξc is a new location that does not
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ξc ∈ Loc heap locations
ρ ∈ Env = Var → Loc environments
η ∈ Heap = Loc × Field → Loc heaps

EJxK(ρ, η) = ρ(x)
EJx.fK(ρ, η) = η(ρ(x), f)
EJnew cK(ρ, η) = ξc
〈x := e, ρ, η〉 → 〈ρ[x 7→ EJeK(ρ, η)], η〉
〈x.f := y, ρ, η〉 → 〈ρ, η[(ρ(x), f) 7→ ρ(y)]〉

〈z := x.m(y), ρ, η〉 → 〈(sm; z := rm),
ρ[thism 7→ ρ(x), pm 7→ ρ(y)], η〉

Figure 5.2: Semantic domains and functions.

occur in ρ or η. The standard rules for sequencing (s ::= s1; s2) are not shown. For a

method call, formals thism and pm of m obtains their values from the corresponding

actuals. The body sm of m, followed by propagation of m’s return variable rm, are

executed in the updated environment. For brevity, the presentation assumes that

each call is statically resolved to a unique target method.

5.2.2 Syntax and Semantics of ALite

Next we describe ALite, an extension of JLite that introduces the relevant

Android constructs. An input program contains a set Class of Java classes with the

syntactic structure described earlier. Some of these classes are application classes,

while others are provided by the Android platform. The analysis aims to model

explicitly the complex high-level semantics of Android, rather than analyzing the

low-level semantics of platform code; thus, the bodies of methods in platform classes

are not included in the input program. The following categories are of particular
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interest: a ∈ ActivityClass , v ∈ ViewClass , and h ∈ ListenerClass . As discussed in

Section 5.1, an activity class a is an application class that is a subclass of Activity,

and a view class v is a subclass of View. A listener class h implements event handlers

associated with views, as discussed later.

Layout Definitions

To represent the effects of layout definitions, the syntax of statements can be

extended with s ::= . . . | x := R.layout.f | x := R.id.f to reflect the occurrences

of layout ids and view ids in the code. XML layout information can be abstracted

as follows. A set of id ∈ Z defines layout ids and view ids. A layout/view id is the

integer value of a constant field from class R.layout/id (e.g., 0x7f030000). A node

in a layout definition is (v, id) where v is a view class. There could be several nodes

that are instances of the same v (e.g., several buttons in a layout). A layout edge

shows a parent-child relationship between views. For example, for act console in

Figure 5.1, one of the layout edges is from parent (RelativeLayout, keyboard group)

to child (ImageView, button esc). A layout definition is a set of layout edges that

form a rooted tree.

Semantics To express the effects of layout inflation, we first generalize the envi-

ronment and the heap:

Env = Var → Loc ∪ Z
Heap = Loc × Field → Loc ∪

View × {vid} → Z ∪
View × {children} → P(View)

The value of a stack location x ∈ Var can now be a layout/view id. An assignment

x := R.layout.f updates ρ(x) with the appropriate layout id (and similarly for view

ids).
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Set View ⊂ Loc denotes all instances of all view classes in the heap. An artifi-

cial field vid for a view refers to the corresponding view id. Another artificial field

children refers to the set of children views. The effects of inflating a layout can be

captured by inflater semantic functions:

IN : Z→ Env × Heap → P(View × Z)
IE : Z→ Env × Heap → P(View × View)

For layout id id l, INJid lK(ρ, η) is a set of pairs (ξv, id), one for each layout node

(v, id). Here ξv is a new heap location representing an instance of view class v, and

id is the corresponding view id. For the inflation of layout edges, IEJid lK(ρ, η) defines

pairs (ξ, ξ′) that correspond to layout edges. The semantics of an inflater call is

[Inflate1] 〈z := x.m(y), ρ, η〉 → 〈ρ[z 7→ ξroot ], η′〉

where ξroot is the view at the root of the hierarchy, since the return value of the inflater

call is that root. In the updated heap η′, for each newly-created view ξ, fields vid

and children are initialized based on INJρ(y)K and IEJρ(y)K. The object referred

to by x is a helper object provided by the platform to implement the inflation. For

example, at line 19 in Figure 5.1, variable inflater refers to this helper. For this call,

INJitem terminalK produces (ξ1, no id) and (ξ2, terminal overlay), where ξ1 is a

new instance of RelativeLayout and ξ2 is a new instance of TextView. (Here no id

is a special value used to denote the absence of a view id.) Using rule Inflate1,

heap η′ has ξ1.children = {ξ2}, ξ1.vid = no id, and ξ2.vid = terminal overlay;

in addition, ρ(k) = ξ1.

108



Operations on Views

Views created through inflation or through explicit instantiation (new v) can be

subjected to several operations defined by the Android platform. Correct modeling

of the semantic effects of these operations is essential for our analysis.

Associations with activities A view can be associated with an activity. When

the activity is active, this view and the view hierarchy rooted at it define the GUI

content displayed to the user. As discussed shortly, this association allows hierar-

chy elements to be accessed programmatically through the activity. The relevant

operations are as follows. First, inflater method Activity.setContentView(int)

can be invoked on an activity, with the parameter being the layout id. As a re-

sult, the root of the inflated view hierarchy becomes associated with the activity,

rather than being returned from the call. The generalization of the semantics is

Heap = . . . ∪ Activity × {root} → View where root is an artificial field for the

activity. The semantic rules are extended as expected

[Inflate2]〈x.m(y), ρ, η〉→〈ρ, η[. . .][(ρ(x), root) 7→ ξroot ]〉

where ρ(x) ∈ Activity and [. . .] represents the heap updates due to inflation, similarly

to rule Inflate1. For example, at line 9 in Figure 5.1, ρ(this) is an activity object ξ1,

and ξ1.root = ξ2 where ξ2 is the RelativeLayout at the root of the new act console

layout instance. Note that similar inflation operations exist for objects other than

activities (e.g., for dialogs) and can be modeled in the same manner.

A call to Activity.setContentView(View) can be used to create an association

between an activity and an existing view. The parameter is a view that could come
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from several sources—for example, it could be programmatically created, or it could

be looked up from an inflated view hierarchy. The semantic effects are

[AddView1]〈x.m(y), ρ, η〉 → 〈ρ, η[(ρ(x), root) 7→ ρ(y)]〉

The same approach applies to similar operations on non-activity objects (e.g., di-

alogs).

Associations with other views The parent-child relationship between two views

can be established during layout inflation, as discussed earlier. Another mechanism is

to explicitly invoke an add-child operation. Several methods with the name addView

can be used for this purpose; lines 23 and 25 in Figure 5.1 show two examples.

Abstracting such calls as x.m(y) where x refers to the parent and y refers to the

child,

[AddView2] 〈x.m(y), ρ, η〉 →
〈ρ, η[(ρ(x), children) 7→ {ρ(y)} ∪ η(ρ(x), children)]〉

where ρ(x), ρ(y) ∈ View . The platform ensures that the new hierarchy is well-

formed—specifically, that the parent-child relation corresponds to a tree and not

to a more general graph. For brevity, we do not express these constraints.

Associations with ids A view id is an integer identifier associated with a view

during inflation. A similar effect can be achieved by using a set-id operation: a call

to method setId(int), as shown at line 22 in Figure 5.1. We use the following rule

for such a call:

[SetId] 〈x.m(y), ρ, η〉 → 〈ρ, η[(ρ(x), vid) 7→ ρ(y)]〉

Associations with event handlers A view can be associated with several lis-

teners, which are instances of classes h ∈ ListenerClass . Each such h implements

one or more listener interfaces. For example, EscapeButtonListener in Figure 5.1

implements interface View.OnClickListener and defines a handler onClick for click
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events. The listeners attached to a view determine which events will be handled

by the view, which in turn defines the possible flow of control in response to user

actions. To capture these associations, the semantics is extended with Heap =

. . . ∪ View × {listeners} → P(Listener) where listeners is an artificial field and

Listener ⊂ Loc denotes all instances of all listener classes in the heap. Set-listener

operations are calls x.m(y) where x is the view and y is the listener; one example is

shown at line 16 in Figure 5.1. The semantic rule is

[SetListener] 〈x.m(y), ρ, η〉 →
〈ρ, η[(ρ(x), listeners) 7→ {ρ(y)} ∪ η(ρ(x), listeners)]〉

Retrieval of views The view ids play an important role in find-view operations.

View.findViewById(int) searches the hierarchy rooted at the view and returns the

descendant view with the given id. A similar operation can also be applied to an

activity, in which case the activity’s entire view hierarchy is searched. The semantics

is captured by

[FindView1] 〈z := x.m(y), ρ, η〉 →
〈ρ[z 7→ find(ρ(x), ρ(y))], η〉

where find(ξ0, id) = ξn if there exists a sequence ξ0, . . . , ξn such that η(ξn, vid) = id

and ξk+1 ∈ η(ξk, children) for all k. When findViewById is invoked on an activity,

[FindView2] 〈z := x.m(y), ρ, η〉 →
〈ρ[z 7→ find(η(ρ(x), root), ρ(y))], η〉

There are also operations that, when invoked on a view, retrieve some descendant

view with a particular run-time property. A typical example is method findFocus(),

which returns the descendant view that currently has focus. Similarly, the call to
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getCurrentView() at line 5 of Figure 5.1 returns the child view that is currently

visible. We represent such operations by

[FindView3] 〈z := x.m(), ρ, η〉 → 〈ρ[z 7→ findm(ρ(x))], η〉

where function findm abstracts the specifics of m’s run-time behavior when invoked

on view ρ(x).

Effects of callbacks The Android platform interacts with the application classes

through various callback methods. One typical example is method onCreate (lines 8–

16 in Figure 5.1), which is invoked on a ConsoleActivity object by the platform code

that manages the activity lifecycle. Another example is callback method onClick

(lines 30–34), which is invoked to handle a click event. The general problem of

handling such callbacks in static analysis for Android is challenging. While some

techniques have been considered in prior work (e.g., [10, 42]), at present there does

not exist a fully comprehensive and precise solution. In our work we do not attempt

to model all callbacks or their possible orderings: instead, we focus on two important

categories that directly affect GUI-related behavior. First, for an activity class a, the

implicit creation of an instance of a can be modeled by t := new a. Any Android-

defined callback to an application method m on an instance of a can be modeled

as a call t.m(). For the example, we conceptually extend the program with t :=

new ConsoleActivity and t.onCreate(), which is similar to the approach from

[10]. In addition to this modeling of activities, we also model the effects of callbacks

to handler methods for GUI events. This modeling is conceptually equivalent to

creating additional statements, one per set-listener call. Recall that for a set-listener

call x.m(y), x refers to a view and y refers to a listener. The declared type of

variable y and the signature of m determine the type of GUI event being handled.
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Let n be the Android-defined signature of handlers for this event. The callback

to the handler can be modeled as y.n(x). For the running example, set-listener

call h.setOnClickListener(j) at line 16 corresponds to an additional statement

j.onClick(h).

5.2.3 Modeling of Menus

Menus are common elements of user interfaces in many GUI-driven applications.

A menu allows users to select from a set of different actions represented by menu

items. The relevant classes defined by the Android platform are Menu and MenuItem.

Class Menu is not a subclass of View, but instead an abstract description of the

view objects to be displayed on the screen to represent a menu window. Similarly,

MenuItem is not a subclass of View. Instances of this class describe view objects that

represent individual selectable items under a menu. For simplicity, we treat Menu and

MenuItem as view classes in both the formal semantics and the analysis. Two types of

menus are most frequently used in Android applications: options menu and context

menu.

Options menu An options menu is displayed when the user presses the MENU

button. Typically, one activity can be associated with one options menu. For an

options menu to exist, certain callback methods3 should be defined. A Menu object is

created by the Android framework, and passed into these callback methods. In these

methods, developers can associate MenuItem objects with the Menu. The implicit

creation of Menu objects can be modeled in a way similar to the implicit creation of

activity objects. Furthermore, at any given moment of time, at most one options

menu can be associated with an activity. So, a generalization of the semantics is

3For example, Activity.onCreateOptionsMenu and Activity.onPrepareOptionsMenu.
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Heap = . . . ∪ Activity × {options} → View where options is an artificial field for

the activity and the view referenced by the field represents the Menu. Consider an

activity class a which defines a required callback method m. Conceptually, we can

model the effects of the callback to m as “t1 := . . . ; t2 := new Menu; t1.options :=

t2; t1.m(t2);”, where t1 contains a reference to an instance of an activity class.

In the callback methods, Menu.add can be called on the Menu object to create

a new menu item and associate it with the Menu. First, we need to model the im-

plicit creation of a menu item object y := new MenuItem. Then, we can apply the

rule AddView2 on the existing Menu object (as the parent) and the newly created

MenuItem object referenced by y (as the child). Alternatively, we can represent the

semantics effects with the following rule

[MenuAdd] 〈z := x.m(. . .), ρ, η〉→
〈ρ[z 7→ ξMenuItem ],
η[(ρ(x), children) 7→ {ξMenuItem} ∪ η(ρ(x), children)]〉

where ρ(x) ∈ View represents a Menu and ξMenuItem represents the newly-created

MenuItem object.

Another way to construct the menu items for a menu is to call the API method

MenuInflater.inflate. This call takes an integer-typed parameter corresponding

to an XML file that defines the menu structure. The XML file defines the menu items

to be created and associated with the menu. This is similar to the layout definition

XML files discussed in Section 5.2.2. The difference is that the menu object, which

is the root of the XML-defined menu structure, has been created before the inflater

call. In the inflater call, the value of the integer parameter to specify the XML file

comes from a constant defined in the R.menu class, which we refer to as menu ids.

We extend the syntax of statements with s ::= . . . | x := R.menu.f to reflect the
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occurrences of menu ids. The effects of inflating a menu can be captured by the

same inflater semantic functions IN and IE defined earlier in Section 5.2.2. For a

menu id idm, INJidmK(ρ, η) is a set of pairs (ξMenuItem, id), one for each layout node

(MenuItem, id). Here ξMenuItem is a new heap location representing an instance of

MenuItem, and id is the corresponding view id. Also similar to before, IEJidmK(ρ, η)

defines pairs (ξ, ξ′) that correspond to layout edges, except that the parent view node

is now a Menu that has been created before the inflater call. Therefore, the semantics

of an inflater call is

[MenuInflate] 〈x.m(y, z), ρ, η〉→〈ρ, η′〉

where x is a helper object provided by the framework to implement the inflation, y

contains a reference to the previously-created Menu object ξMenu, and z is the integer

parameter specifying the menu id. In the updated heap η′, ξMenuItem.vid = id , and

ξMenu.children contains all inflated ξMenuItem objects.

Context menu A context menu is displayed when the user long clicks on a view,

and the context menu is considered associated with the view. Similar to an options

menu, a ContextMenu (subclass of Menu) object is created implicitly by the Android

framework when the triggering event happens, and is passed to certain pre-defined

callback methods m (e.g., Activity.onCreateContextMenu). The view object is also

passed as a parameter of the callback. To model this behavior, the generalization

of the semantics is Heap = . . . ∪ View × {context} → View where context is an

artificial field for the view. The effect of calling the callback method m can be mod-

eled conceptually as “t1 := . . . ; t2 := new ContextMenu; t3 := . . . ; t3.context :=

t2; t1.m(t2, t3);”, where t1 contains a reference to an instance of the class that defines m

and t3 contains a reference to the view object to be associated with the ContextMenu.
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In the callback method, ContextMenu.add can be called and the semantics is the

same as Menu.add. Also in the callback method, a MenuInflater.inflate call could

be made to construct the menu items for a ContextMenu; the modeling of this case

is the same as discussed earlier.

Event listeners for menus and menu items Event listeners can be associated

with menus and menu items to define the effect of selecting a menu item. Calls for

listener association can be identified as set-listener operations and modeled using the

SetListener semantic rule.

5.2.4 Modeling of Lists

ListView is a frequently used Android GUI construct to display a list of similar

entities. For example, a list of files and directories can be displayed in a ListView.

Each entity in the list is a list item. A list item can be as simple as a sequence of

characters, or it could have its own structure and contain a set of other GUI con-

structs. Considering the same example, a file could be displayed with its file name,

and a directory could be displayed with its name plus a folder-like icon. The Android

platform provides specific APIs for construction and management of ListView ob-

jects. The semantics of these APIs need to be considered in our formal development

of ALite.

Modeling of ListActivity and ListActivity.getListView ListActivity is

a subclass of Activity that is guaranteed to contain a ListView in its view hierar-

chy. The contained ListView must be associated with the platform-defined view id

list. Given a ListActivity, the corresponding ListView can be located by call-

ing the getListView method, which is equivalent to calling findViewById with id
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list. However, if no view hierarchy is currently associated with the ListActivity, a

platform-defined layout list layout will be inflated on-demand when getListView

is called. (Thus, the developer has the option to not explicitly call setContentView

on a ListActivity.) The modeling of a call to getListView is as follows:

[FindListView] 〈z := x.m(), ρ, η〉→〈ρ′′, η′′〉

if 〈z := x.findView 2(list), ρ′, η′〉→〈ρ′′, η′′〉. Here 〈ρ′, η′〉 is defined either by 〈ρ, η〉 if

η[(ρ(x), root)] exists, or by 〈x.Inflate2(list layout), ρ, η〉→〈ρ′, η′〉 otherwise.

Modeling of ListView and ListAdapter As discussed earlier, ListView is used

to display a list of similar entities. For each ListView, a ListAdapter manages the

underlying data items and displays them in the rows of the list view. The association

between ListView and ListAdapter is established through the setAdapter API

call. To model this association, we generalize the semantics with Heap = . . . ∪

ListView × {adapter} → Adapter where adapter is an artificial field for ListView

referencing adapter objects represented by set Adapter. The effects of setAdapter

can be represented by

[SetAdapter] 〈x.m(y), ρ, η〉→〈ρ, η[(ρ(x), adapter) 7→ ρ(y)]〉

where ρ(x) and ρ(y) represent a ListView instance and a ListAdapter instance,

respectively. The getView method of the associated ListAdapter is responsible for

defining View objects for list items in the ListView. When a ListView needs to be

displayed, getView is called by the Android platform to construct list item objects,

which are added, also by the platform, as child views into the ListView. This in-

teraction among ListView, its associated ListAdapter, and the underlying platform

can be modeled by “t1 := x.adapter; t2 := t1.getView(); x.addView(t2);”, where x

contains a reference to a ListView object.
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5.2.5 Modeling of Dialogs

In GUI applications, a dialog is typically used to display short messages or ask the

user a brief question. In the Android platform, a dialog is very similar to an activity

in that (1) a dialog is associated with a hierarchy of views; (2) views in a dialog can be

associated with listeners; (3) the operations on views discussed earlier (Section 5.2.2)

also apply to views associated with dialogs; and (4) dialogs have lifecycle callbacks

such as onCreate. To model dialogs, we first generalize the semantics with Heap =

. . . ∪ Dialog × {root} → View where root is an artificial field for the dialog. Then,

the semantic rules for activities are extended to handle dialogs as well. For example,

the change needed for rule Inflate2 is to let ρ(x) ∈ Activity ∪Dialog for an inflater

operation x.m(y). The rules that require such changes are Inflate2, AddView1,

and FindView2.

5.3 Static Reference Analysis

Given the abstracted language ALite, we aim to develop a static analysis of

the creation and propagation of views, as well as their interactions with activities,

dialogs4, listeners, and other views.5 Specifically, the analysis

• defines static abstractions of run-time objects: views, activities, and listeners

• models the flow of (references to) such objects to stack variables and object

fields

4Since handling of dialogs and activities are very similar, for brevity we will only discuss activities.
5As described in Section 5.2.3, menus and menu items are treated as views, so we discuss only

“ordinary” views.
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• determines the relevant structural relationships, including (1) associations of

views with activities and listeners, and (2) parent-child relationships between

views

A similar problem for the plain-Java language JLite can be solved using standard

existing techniques. We consider one such solution, based on the construction and

analysis of a constraint graph. A graph node corresponds to x ∈ Var (a variable

node), f ∈ Field (a field node), or an expression new c (an allocation node; the set of

these expressions will be denoted by Alloc). Edges represent constraints on the flow

of values. For example, an assignment x := y is mapped to an edge y → x, to encode

the constraint that any value that flows to y also flows to x. Similarly, x := new c

is mapped to new c → x to represent the constraint that new c is among the values

that flow to x. Reachability from an allocation node determines all locations to

which references to the corresponding run-time objects can flow. Such an analysis is

usually referred to as a control-flow/calling-context-insensitive, field-based reference

analysis [60, 95], and is the starting point for our analysis for Android. Various

refinements of this technique have been investigated (e.g., [60, 99, 100]); our analysis

developments for Android are orthogonal to these refinements and can be combined

with them.

5.3.1 Constraint Graph

Figure 5.3 shows several constraint graph nodes and edges for the running example.

Some of the nodes have subscripts referring to the line numbers from Figure 5.1 where

the corresponding element occurs for the first time. Additional nodes and edges are

shown in Figure 5.4; gray nodes represent views.
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Figure 5.3: Partial constraint graph for the running example.

Nodes For every integer value in R.layout, there is a layout id node id l ∈ LayoutId .

Similarly, a view id node id v ∈ ViewId corresponds to each value from R.id. Next, an

activity node act ∈ Activity is created for each activity class, to represent instances

of this class created implicitly by the Android platform (such instances are never

created by new in the application code). As a minor abuse of notations, we use

Activity to represent both the semantic domain of heap locations of activity objects

in Section 5.2, as well as the set of constraint graph nodes for these objects (i.e.,

their static abstractions) in this section. The same convention is followed for other

semantic domains and corresponding constraint graph nodes. Four id nodes, as well

as the activity node for ConsoleActivity, are shown in Figure 5.3.

A view inflation node view infl ∈ ViewInfl is introduced for each layout node from

XML layouts. This node represents the view created during inflation—that is, the

heap object ξv created for a layout node (v, id), as defined by rules Inflate1,2. If

the same layout is inflated in several places in the application, a “fresh” set of graph

nodes is introduced at each inflation site. Six view inflation nodes are illustrated in
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Figure 5.4; a subscript x.y refers to the y-th object inflated at line x from Figure 5.1.

We also distinguish the subset of allocation nodes ViewAlloc ⊂ Alloc that instantiate

view classes, and use viewalloc to denote such nodes. Similarly, let Listener ⊂ Alloc

be the subset of allocation nodes that instantiate listener classes; elements of this set

are denoted by lst . In general, any object could be a listener, including activities

and views. To simplify the presentation we assume that activities and views are not

listeners, but our implementation handles the general case.

The flow of nodes view ∈ View = ViewInfl ∪ ViewAlloc and the associations of

such nodes with act and lst nodes are the core concern of the analysis. This requires

modeling of the operations described earlier. For each call z := x.m(y) corresponding

to one of the semantic rules, an operation node op ∈ Op is added to the graph, and

the nodes for variables x, y, and z are connected to it. For example, for the find-view

operation d=c.findViewById(a) at line 6, the graph contains a FindView node with

incoming edges from c and a, and an outgoing edge to d (shown in Figure 5.3).

Edges In addition to the JLite-based edges described earlier, the constraint graph

contains edges for Android features. An assignment x := R.layout.f results in an

edge id l → x from the corresponding layout id node to the variable node x. Similar

edges are added for view id nodes id v. For an activity node act , an edge is added from

it to all thism variable nodes, where m is a callback method that could be invoked

by the framework with this activity as the receiver object. For example, in Figure 5.3

there is an edge from the activity node to parameter this9 of onCreate.

All edges described so far model the flow of values. We also use edges n ⇒

n′ to represent constraints on other relevant relationships. For example, an edge

view 1 ⇒ view 2 between two view nodes shows a parent-child relationship—that is,
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Figure 5.4: Additional graph nodes and edges.

the constraint view 2 ∈ view 1.children. An edge view ⇒ id v indicates that the view is

associated with this view id (by rules Inflate1,2 and SetId). An edge view infl ⇒ id l

connects the root of an inflated hierarchy with the layout id of the layout that was

inflated. Similarly, view infl ⇒ Inflate1,2 is introduced when the view is the root of the

hierarchy inflated by this Inflate operation node. An edge act ⇒ view indicates that

the view is the root of the hierarchy associated with the activity (as set up by rules

Inflate2 and AddView1). Finally, view ⇒ lst shows that the view is associated

with this listener because of rule SetListener. All these categories of edges are

illustrated in Figure 5.4, with edge labels added for clarity. Although not covered by

the example, similar edges related to options menus, context menu, and their menu

items are also part of the constraint graph.

5.3.2 Constraint-Based Analysis

We define the analysis in terms of constraints over the nodes and edges of the

graph, with the help of two binary relations. First, ancestorOf ⊆ View ×V iew is the

transitive closure of the parent-child relation: view 1 ancestorOf view 2 if and only if

there exists a path in the constraint graph starting at view 1, ending at view 2, and
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containing only view nodes and ⇒ edges labeled with child . The second relation is

flowsTo ⊆ (View ∪ LayoutId ∪ ViewId ∪ Activity ∪ Listener) × (Var ∪ Field ∪ Op).

This relation shows that the value represented by the first node—a view, an id, an

activity, or a listener—flows to the variable, field, or operation represented by the

second node. Both relations can grow during the analysis. For example, when two

views flow to an AddView operation node (corresponding to rule AddView2), a new

parent-child edge is added to the constraint graph, which in turn affects ancestorOf .

The basic inference rules for these two relations are as follows:

n1 ∈ View ∪ LayoutId ∪ ViewId ∪ Activity ∪ Listener n2 ∈ Var n1 → n2

n1 flowsTo n2

n2 ∈ Var ∪ Field n3 ∈ Var ∪ Field ∪Op n2 → n3 n1 flowsTo n2

n1 flowsTo n3

view ∈ View

view ancestorOf view

view 1 ancestorOf view 2 view 2 ⇒ view 3

view 1 ancestorOf view 3

For example, in Figure 5.3, view id console flip flows to operation node FindView 6

via variable node a, and view TerminalView21 flows to SetId22 and AddView 23 via n.

Considering the parent-child edges in Figure 5.4, the root node RelativeLayout9.1 is

an ancestor of seven nodes.

The inference rules for the semantic rules are described below. For example, for

AddView1 we have

act flowsTo AddView1 view flowsTo AddView1

act ⇒ view

where act is the activity node. Similarly,

view 1 flowsTo AddView2 view 2 flowsTo AddView2

view 1 ⇒ view 2
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assuming that view 1 flows to the operation node AddView 2 in the role of the par-

ent. For example, TerminalView21 flows to AddView 23 in the role of the child (Fig-

ure 5.3). As described shortly, RelativeLayout19.1 flows to this operation in the role

of the parent, via k and m. As a result, a parent-child edge RelativeLayout19.1 ⇒

TerminalView21 is created by the analysis, as shown in Figure 5.4.

For semantic rules SetId and SetListener we have

view flowsTo SetId id v flowsTo SetId

view ⇒ id v

view flowsTo SetListener lst flowsTo SetListener

view ⇒ lst

In Figure 5.3, both TerminalView21 and console flip flow to SetId22. This leads

to the creation of TerminalView21 ⇒ console flip (shown in Figure 5.4), which in

turn affects relation ancestorOf and the find-view operations.

For rules FindView1,2,3 the constraints are

view 1 flowsTo FindView1 id v flowsTo FindView1
FindView1→n view 1 ancestorOf view 2 view 2⇒ id v

view 2 flowsTo n

act flowsTo FindView2 id v flowsTo FindView2
FindView2→ n act ⇒ view 1

view 1 ancestorOf view 2 view 2 ⇒ id v

view 2 flowsTo n

view 1 flowsTo FindView3 FindView3→ n view 1 ancestorOf view 2

view 2 flowsTo n

For example, ConsoleActivity and id button esc flow to FindView 13, and the out-

going edge is to variable g. Furthermore, ConsoleActivity ⇒ RelativeLayout9.1

because this view is the root of the hierarchy inflated by Inflate9 and associated with

the activity. This root is an ancestor of ImageView9.4, which has an edge to the same
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view id. Thus, the analysis can conclude that ImageView9.4 flowsTo g. Later this is

used to determine that the view flows to SetListener 16.

Recall that semantic rule FindView3 retrieves some descendant view with a par-

ticular run-time property. The static approximation is to assume that any descen-

dant view can be retrieved, as shown in the constraint rule for FindView3 operation

nodes. Sometimes more restricted semantics applies: for example, for the call to

getCurrentView() at line 5 in Figure 5.1, any child view can be retrieved, but not

any deeper descendant. Such refinements are not discussed, but they are employed

by our implementation.

For rules Inflate1,2, suppose that a layout id id l flows to an Inflate operation

node. In that case, the corresponding layout is inflated and its root node is connected

with the inflater node and with the layout id (to capture the origin of the inflated

hierarchy). The rules are

id l flowsTo Inflate1 Inflate1→ n
view ⇒ Inflate1 view ⇒ id l

view flowsTo n

act flowsTo Inflate2 id l flowsTo Inflate2
view ⇒ Inflate2 view ⇒ id l

act ⇒ view

In the first case, the root is propagated to the left-hand side variable at the inflater

call. For example, Inflate19 has an outgoing edge to k, and the analysis determines

that RelativeLayout19.1 flows to k (and from there to several other nodes). In the

second case, the call associates the activity with the root object: e.g., at Inflate9 an

edge ConsoleActivity⇒ RelativeLayout9.1 is created.

Additional semantic rules introduced in Sections 5.2.3–5.2.5 can all be represented

by some composition of the rules introduced in this section; these details are omitted.
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Algorithm 5.1: ReferenceAnalysis(A)
Input: Source code and XML resources of an Android application A
Output: Constraint graph G
Output: Sets solutionReceiver , solutionParameter , solutionResult
// Build an initial constraint graph, similar to the one shown in Figure 5.3

1 G← ConstructInitialConstraintGraph(A)
2 Initialize(G)
3 ProcessInflaterCalls(G)
4 changed ← true
5 while changed do
6 changed ← false
7 if ProcessAddView1(G) then
8 changed ← true

9 if ProcessAddView2(G) then
10 changed ← true

11 if ProcessSetId(G) then
12 changed ← true

13 if ProcessSetListener(G) then
14 changed ← true

15 if ProcessFindView1(G) then
16 changed ← true

17 if ProcessFindView2(G) then
18 changed ← true

19 if ProcessFindView3(G) then
20 changed ← true

5.3.3 Analysis Algorithm and Implementation

To find a solution to the system of constraints, we employ a fixed-point algorithm.

The overall process is outlined in Algorithm 5.1. Lines 1–3 correspond to the initial-

ization stage of the algorithm, and the fixed-point computation is shown at lines 4–20.

The output is the constraint graph together with three sets solution . . .. As discussed

later, this information can be used to answer various queries about the flow of views

and about their associations with activities, listeners, and other views.

Initial constraint graph First, the analysis creates an initial constraint graph

(line 1 in Algorithm 5.1). This graph contains all edges that can be directly inferred

from program statements: for example, edges due to assignments and object alloca-

tion. All edges in Figure 5.3 fall in this category. Each method in the application
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code is considered executable and thus analyzed. Polymorphic calls are resolved using

class hierarchy information. Calls to application methods result in constraint graph

edges that represent parameter passing and return values.

The abstracted semantics refers to a small number of broad categories of relevant

operations (e.g., AddView, SetListener, etc.) which in reality correspond to a

wide variety of Android APIs. Some of these APIs have semantic variations that are

not discussed here, but are handled by our implementation. Occurrences of these APIs

in the application code are recognized and modeled appropriately in the constraint

graph. The effects of callbacks from the Android platform are also modeled at this

time, as outlined at the end of Section 5.2.2. However, instead of creating explicit

statements, the analysis simply adds constraint graph nodes and edges to simulate

the corresponding semantic effects.

Helper data structures The rest of the analysis uses several helper data structures

to encode reference flow information based on the constraint graph. One example

is solutionReceiver , a set containing pairs (view , op) where operation node op ∈

AddView 2 ∪SetId ∪SetListener ∪FindView 1 ∪FindView 3 and node view flows to op

as the receiver object of the operation. Sets solutionParameter and solutionResult

also contain pairs (view , op), where the view flows in op as a parameter, or flows out

of op as a result.

Four sets reaching . . . are used to collect certain reachability information. These

sets are computed by the call at line 2 in Algorithm 5.1. The invoked procedure

Initialize uses graph reachability to compute relationships that do not depend on

the effects of operation nodes. Examples of such relationships include id flowsTo n

and act flowsTo n. For example, set reachingLayoutIds ⊆ LayoutId×Op encodes the
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Algorithm 5.2: Initialize(G)
Input: Constraint graph G
Output: Sets solution . . . and reaching . . .

1 foreach id l ∈ LayoutId do
2 foreach op ∈ (Inflate1 ∪ Inflate2) reachable from id l do
3 reachingLayoutIds ← reachingLayoutIds ∪ {(id l, op)}

4 foreach idv ∈ ViewId do
5 foreach op ∈ (FindView1 ∪ FindView2 ∪ SetId) reachable from idv do
6 reachingViewIds ← reachingViewIds ∪ {(idv , op)}

7 foreach act ∈ Activity do
8 foreach op ∈ (Inflate2 ∪ FindView2 ∪AddView1) reachable from act do
9 reachingActivities ← reachingActivities ∪ {(act , op)}

10 foreach lst ∈ Listener do
11 foreach op ∈ SetListener reachable from lst do
12 reachingListeners ← reachingListeners ∪ {(lst , op)}

13 foreach view ∈ View do
14 foreach op ∈ (AddView2 ∪ SetId ∪ SetListener ∪ FindView1 ∪ FindView3) with receiver reachable from

view do
15 solutionReceiver ← solutionReceiver ∪ {(view , op)}

16 foreach op ∈ (AddView1 ∪AddView2) with parameter reachable from view do
17 solutionParameter ← solutionParameter ∪ {(view , op)}

18 ComputePathEdges(G)

layout ids that reach an inflate operation node op. Sets reaching . . . are computed

as expected (lines 1–12 in Algorithm 5.2). Furthermore, views that flow directly to

operation nodes can also be computed at this stage of the analysis, as shown at lines

13–17. For example, in Figure 5.3, due to path TerminalView 21 → n→ AddView 23,

the pair (TerminalView 21,AddView 23) is added to set solutionParameter .

Path edges Of course, indirect flow of a view to an operation is also possible. For

example, in Figure 5.3, path Inflate19 → k → m→ AddView 23 propagates the output

of one operation node to the input of another. To represent such flow, we introduce

path edges in the constraint graph. Each such edge op1 → op2 starts with a source

operation op1 ∈ (Inflate1 ∪ FindView 1 ∪ FindView 2 ∪ FindView 3). A receiver path

edge has op2 ∈ (AddView 2 ∪ SetId ∪ SetListener ∪ FindView 1 ∪ FindView 3), while
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Algorithm 5.3: ProcessInflaterCalls(G)
Input: constraint graph G = (N,E)

1 foreach (id l, op) ∈ reachingLayoutIds do
2 xml ← ParseXml(id l)
3 rootNode ← null

4 foreach (c ∈ ViewClasses, f ∈ {R.id.∗}) in xml in depth-first order do
5 viewNode ← new view infl,c ∈ ViewInfl
6 idNode ← unique idv node for f
7 N ← N ∪ {viewNode, idNode}
8 E ← E ∪ {viewNode

vid
==⇒ idNode}

9 if rootNode = null then
10 rootNode ← viewNode
11 else

12 E ← E ∪ {parentNode
child
===⇒ viewNode}

13 if op ∈ Inflate1 then
14 solutionResult ← solutionResult ∪ {(rootNode, op)}
15 PropagateAlongPathEdges(G, op, rootNode)

16 else
// op ∈ Inflate2

17 foreach (act , op) ∈ reachingActivities do

18 E ← E ∪ {act
root
==⇒ rootNode}

a parameter path edge has op2 ∈ (AddView 1 ∪ AddView 2). The subsequent fixed-

point computation propagates information only along path edges, as discussed shortly.

Line 18 in Algorithm 5.2 contains a call to a helper function ComputePathEdges

to perform this computation. This function, which is not shown here, performs graph

reachability from the left-hand-side variable at each Inflate1 and FindView 1,2,3 node

to identify all reachable receivers and parameters of operation nodes.

Inflation operations Given the reachability information, Inflate1,2 nodes are

processed (based on reaching layout ids) to create inflated view nodes and the parent-

child edges for them. This processing is done at line 3 in Algorithm 5.1, through the

call to Algorithm 5.3. Helper function ParseXml parses the corresponding layout

definition file. In a depth-first traversal of the hierarchy, the parent node (line 12) is

easy to obtain. Different variations of the inflater semantics are handled as necessary,

and edges to represent relevant semantic effects (e.g., the association between an
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Algorithm 5.4: ProcessAddView1(G)
Input: Constraint graph G = (N,E)
Output: Boolean indicating whether new edges were added

1 changed ← false
2 foreach AddView1 node op do
3 foreach (act , op) ∈ reachingActivities do
4 foreach (view , op) ∈ solutionParameter do

5 candidate ← edge act
root
==⇒ view

6 if candidate /∈ E then
7 E ← E ∪ {candidate}
8 changed ← true

9 return changed

activity and a root GUI object at Inflate2) are introduced. In the case when the

inflater call returns the root node, helper function PropagateAlongPathEdges

(called at line 15; the function’s body is not shown) considers all path edges from op to

other operation nodes, and adds rootNode to the corresponding sets solutionReceiver

and solutionParameter at the target nodes.

Fixed-point computation In the final phase of the analysis, a fixed-point com-

putation propagates views through the constraint graph based on the path edges

(lines 4–20 in Algorithm 5.1). For each node that has a view as input or output, a

set of reaching views is maintained and updated as necessary. This information is

represented by the three sets solution . . . described earlier.

The processing of most operation nodes is straightforward. For example, the

code for ProcessAddView1 is shown in Algorithm 5.4. Functions ProcessAd-

dView2 and ProcessSetId are defined similarly, and are not shown here. For a

FindView 1,2,3 node op1, when a new view is resolved as the output result of op1, this

view is propagated along path edges to each operation op2 whose receiver or param-

eter depends on the output of op1. This processing is illustrated by Algorithm 5.5.
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Algorithm 5.5: ProcessFindView1(G)
Input: Constraint graph G = (N,E)
Output: Boolean indicating whether new edges were added

1 changed ← false
2 foreach FindView1 node op do
3 foreach (view1, op) ∈ solutionReceiver do

4 foreach view2 reachable from view1 along edges
child
===⇒ do

5 foreach edge view2
vid
==⇒ idv do

6 if (idv , op) ∈ reachingViewIds then
7 candidate ← (view2, op)
8 if candidate /∈ solutionResult then
9 solutionResult ← solutionResult ∪ {candidate}

10 changed ← true
11 PropagateAlongPathEdges(G, op, view2)

12 return changed

For each receiver view 1 at a FindView 1 node, the hierarchy rooted at this view is

examined for a descendant node view 2 whose view id matches an id that reaches

the operation. Each such descendant is added to solutionResult , indicating that the

return value of the operation could be a reference to this view. Furthermore, helper

function PropagateAlongPathEdges (discussed earlier) propagates view 2 from

op to other operation nodes. The processing of FindView 2,3 nodes (lines 17 and 19

in Algorithm 5.1) is done in a similar manner.

The processing of SetListener nodes is described in Algorithm 5.6. In addition

to associating a view with a listener object (line 5), new constraint graph edges may

be created to represent the flow of views and listeners to the corresponding event

handlers (lines 9–10). Given the listener object lst and the set-listener statement,

ResolveHandler considers the event handler signatures in the corresponding lis-

tener interface, and performs virtual dispatch using the type of lst to find the cor-

responding event handler methods. For each such method, the listener object node
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Algorithm 5.6: ProcessSetListener(G)
Input: Constraint graph G = (N,E)
Output: Boolean indicating whether new edges were added

1 changed ← false
2 foreach SetListener node op do
3 foreach (view , op) ∈ solutionReceiver do
4 foreach (lst , op) ∈ reachingListeners do

5 candidate ← edge view
listener
=====⇒ lst

6 if candidate /∈ E then
7 E ← E ∪ {candidate}
8 changed ← true

// ResolveHandler resolves the set of possible event handler methods

// corresponding to the given listener object lst and SetListener node op
9 foreach m ∈ ResolveHandler(lst , op) do

// thism ∈ Var represents "this" variable of m; parm ∈ Var represents

// the formal parameter of m getting the view object

10 E ← E ∪ {lst → thism, view → parm}
// Propagate lst and view to receivers and parameters of operation

// nodes, in a way similar to lines 11-12 and 14-17 in Algorithm 5.2

11 PropagateToOpNodes(lst , view)

12 return changed

is connected to the this variable node, and the view object (i.e., the receiver ob-

ject for the set-listener node) is connected to the corresponding parameter node.

For the running example in Figure 5.1, due to the set-listener call at line 16, edges

EscapeButtonListener15 → this31 and ImageView9,4 → r are created, since the

resolved event handler is onClick (defined at lines 30–34 in Figure 5.1).

Due to these additional edges, reachability in the constraint graph may change and

the solution sets may need to be updated. Specifically, the relevant listener object

and view object (EscapeButtonListener15 and ImageView9,4 in this example) are

propagated to the receivers and parameters of reachable operation nodes. This is done

in a way similar to lines 11–12 (for listeners) and 14–17 (for views) from Algorithm 5.2.

The propagation is performed by calling helper function PropagateToOpNodes

(line 11 in Algorithm 5.6).
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Analysis implementation Our implementation is based on the Soot analysis

framework [109]. Soot’s intermediate representation can be constructed either from

source code, or from the Dalvik bytecode specific to Android [13, 81]. Certain An-

droid GUI features are not handled by the current implementation (e.g., fragments).

Another limitation is that native code is not analyzed, although we have not observed

native code that creates GUI objects or registers listeners.

5.3.4 Analysis Output

The information computed by the analysis can be used to answer two types of

queries. First, as with traditional reference analysis, the basic query is: Given a

variable x, what are the objects that x may reference? Such information is widely

used by various other static analyses (e.g., to perform control-flow analysis and data

dependence analysis). In this work we focus on variables that can reference view

objects. Given a view-typed variable x, the query is answered by traversing the

constraint graph backward from x. Any reached view node (allocated or inflated)

is included in the answer. In addition, if the left-hand-side variable at an operation

node is reached, set solutionResult for this node is also included in the answer.

The output of the proposed analysis can also provide essential information about

the structure and behavior of the application’s GUI. This information plays a key

role in program understanding, test generation, and profiling. One key question that

can be answered is the following: For each user-visible window (i.e., activity, menu,

or dialog), what are the GUI widgets and what is their hierarchical structure? The

constraint graph can be used to answer this question directly. Another important

question is: Which widgets in a window have application-defined behavior and what
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are the handler methods implementing this behavior? This question can be answered

by considering SetListener nodes and the corresponding pairs (view , lst) derived from

sets solutionReceiver and solutionParameter at these nodes. Several case studies

presented later indicate that the proposed analysis answers these questions with very

high precision.

5.4 Experimental Evaluation

We apply the analysis on 20 open-source Android applications and seek to answer

the following questions. First, how often do these applications use the Android fea-

tures modeled by our analysis? This characterization is presented in Section 5.4.1.

Second, how precisely does the analysis answer queries related to these features?

Section 5.4.2 and Section 5.4.3 address this question.

5.4.1 Application Characteristics

Characteristics of the 20 applications are described in Table 5.1 and Table 5.2.

Almost all programs have been used in prior work [87,122,124,128]. The tables show

the number of application classes and methods, as well as the breakdown of constraint

graph nodes. These measurements characterize the relevant application features and

provide motivation for the proposed analysis of GUI-related behavior.

Columns “activities”, “menus”, and “dialogs” measure the number of independent

on-screen GUI windows that can be presented to the user. The total number of

windows (activities + menus + dialogs) in an analyzed application is typically larger

than 20. It likely would be impractical to manually create and maintain models of

these GUIs for the purposes of program understanding and test generation (e.g., as
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App Classes Methods activities menus dialogs ids (L/V) views (I/A) listeners

APV 68 415 4 4 5 4/14 92/21 17
Astrid 1228 5782 41 3 48 106/237 1487/46 177
BarcodeScanner 126 594 9 4 6 14/34 181/0 12
Beem 284 1883 12 6 5 25/54 200/0 13
ConnectBot 371 2366 11 8 17 21/48 404/7 53
FBReader 954 5452 27 9 8 27/117 390/9 45
K9 815 5311 32 3 19 43/168 733/8 56
KeePassDroid 465 2784 20 11 9 29/84 349/12 32
Mileage 221 1223 50 15 9 36/64 529/0 30
MyTracks 485 2680 32 8 20 34/163 2218/4 29
NPR 249 1359 13 12 6 21/92 348/9 17
NotePad 89 394 8 3 10 10/17 225/4 9
OpenManager 60 252 8 2 9 10/54 331/0 21
OpenSudoku 140 726 10 6 18 17/36 446/6 16
SipDroid 331 2863 12 5 13 8/51 326/4 10
SuperGenPass 65 268 3 3 4 8/15 144/0 11
TippyTipper 57 241 6 3 0 7/42 147/22 27
VLC 242 1374 10 2 13 44/110 457/11 46
VuDroid 69 385 3 2 1 4/7 23/6 4
XBMC 568 3012 22 20 24 33/171 931/23 107

Table 5.1: Analyzed applications, and object and id nodes in the constraint graph.

needed in prior work [55,105,122,123]). The output of our analysis can be useful for

automated construction and evolution of structural and behavioral GUI models.

Column “ids” shows the number of layout ids (L) followed by the number of view

ids (V). Based on the measurements of layout ids as well as inflater nodes (column

“Inflate”), it is clear that XML layouts are widely used and their flow/use be modeled

in a static analysis. Another observation is that the number of view ids is large, and

their use must be accounted for in a static analysis, especially because the number

of find-view operations where these ids are used (column “FindView”) is also quite

large.

Column “views” shows the number of inflated (I) and explicitly allocated (A) view

nodes. The large number of views implies a complex GUI structure that requires

careful modeling (e.g., in order to generate representative input events for profiling

and for high test coverage). Most views are inflated, but explicitly allocated views
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App Inflate FindView AddView SetId SetListener

APV 6 8 43 0 19
Astrid 84 491 82 1 188
BarcodeScanner 12 37 1 0 11
Beem 24 55 1 0 29
ConnectBot 24 75 37 1 57
FBReader 25 140 28 0 45
K9 45 254 23 2 101
KeePassDroid 37 122 25 0 31
Mileage 37 106 29 6 31
MyTracks 26 156 2 0 25
NPR 21 150 22 0 40
NotePad 7 26 23 0 10
OpenManager 14 64 16 0 22
OpenSudoku 17 77 31 3 17
SipDroid 7 68 20 0 10
SuperGenPass 5 15 1 0 11
TippyTipper 8 43 20 0 30
VLC 51 159 13 1 69
VuDroid 5 8 7 0 4
XBMC 31 270 116 0 80

Table 5.2: Operation nodes in the constraint graph.

are also present in 15 out of the 20 applications. Explicit manipulation of the view

hierarchy via add-child operations (column “AddView”) occurs in all 20 applications.

Our analysis was specifically designed to handle all these features. Event handlers

(column “listeners”) and the associated set-listener operations (column “SetListener”)

are commonly used by the applications. Static control/data flow analysis for Android

must account for the association between views and the event handlers that respond

to them, since they play a critical role in the run-time control flow.

5.4.2 Analysis Cost and Precision

Table 5.3 shows the running time of the analysis and measurements of the com-

puted solution. Even for the larger programs, the analysis time is very practical.

Column “receivers” shows the average number of view objects that are receivers at

operation nodes (e.g., FindView and AddView2). Smaller numbers imply higher pre-

cision, with 1 being the lower bound. For 16 out of the 20 programs, this average is
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App
Time Average number

(sec) receivers parameters results listeners

APV 0.70 1.00 1.00 1.44 1.00
Astrid 7.42 3.42 2.74 1.84 1.37
BarcodeScanner 0.76 1.20 1.00 1.10 1.07
Beem 0.80 1.04 1.00 1.08 1.00
ConnectBot 1.59 1.00 1.03 1.02 1.02
FBReader 3.57 1.49 1.11 1.72 1.37
K9 5.81 1.14 1.04 1.21 1.03
KeePassDroid 2.00 1.81 1.00 1.80 1.06
Mileage 0.63 2.38 1.17 2.12 1.82
MyTracks 1.32 1.31 1.00 2.49 1.41
NPR 0.71 1.86 1.00 1.61 4.94
NotePad 0.60 1.02 1.00 1.00 1.00
OpenManager 0.71 1.41 1.00 1.69 1.24
OpenSudoku 0.54 1.07 1.06 1.06 1.20
SipDroid 1.05 1.66 1.00 1.00 1.50
SuperGenPass 0.24 2.00 1.00 1.94 1.96
TippyTipper 0.66 1.15 1.00 1.00 1.34
VLC 0.93 1.11 1.08 1.12 1.00
VuDroid 0.34 1.21 1.00 1.00 1.00
XBMC 1.86 7.23 1.17 1.78 2.84

Table 5.3: Analysis running time (in seconds) and average number of objects in the
solution for operation nodes.

less than 2. Similar observations can be made for column “parameters”, which shows

the average number of views reaching an AddView node as a parameter. Column “re-

sults” shows how many views, on average, are results (i.e., outputs) from operations

such as FindView . Finally, column “listeners” shows how many listener objects, on

average, are associated with a view object at a set-listener operation. As with the

other measurements, this number is typically small, indicating good precision.

Case studies In order to further evaluate the precision of the analysis, detailed

case studies were performed on six applications: APV, BarcodeScanner, OpenManager,

SuperGenPass, TippyTipper, and VuDroid. These applications have the smallest

number of windows (activities + menus + dialogs), as shown in Table 5.1, and thus

were chosen to make it feasible to perform comprehensive manual examination of

their behavior and code.
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By manually reasoning about the application and all solution sets (whose sizes

are presented in Table 5.3), we determined which solution elements are part of the

“perfectly-precise” static solution (i.e., the solution capturing all and only possible

run-time behaviors). For APV, SuperGenPass, TippyTipper, and VuDroid, our solu-

tion achieves perfect precision.

For BarcodeScanner, the perfectly-precise measurements would be 1.15 for “re-

ceivers” (instead of 1.20), 1.08 for “results” (instead of 1.10), and unchanged for the

other two columns. The imprecision is due to the lack of integer range analysis.

Specifically, there is a FindView 3 operation “lhs = view.getChildAt(i)” which re-

trieves the i-th child view of the input view. Since the possible values of i are not

modeled by the analysis, all child views are considered as possible outputs for this

operation, while in reality one of them is infeasible. Later, the output view referenced

by lhs is used as a receiver for another operation. Therefore, the over-approximation

for the output of this FindView 3 operation affects both the “receivers” and “results”

measurements.

In OpenManager, there is a WirelessManager activity which cannot be triggered

by any means. If we consider it as dead code and exclude it from the solution, the re-

computed measurements would be 1.43 for “receivers”, unchanged for “parameters”,

1.63 for “results”, and 1.25 for “listeners”. Compared with this refined solution, the

perfectly-precise measurements would be 1.21 for “receivers”, unchanged for “param-

eters”, 1.13 for “results”, and still 1.25 for “listeners”. After manual investigation, we

found that three Inflate2 operations are performed independently on the same dialog

object in three different branches of a switch statement, with the same layout id.

Right after each Inflate2 operation, a FindView 2 operation is performed to retrieve
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App Windows Views Handlers

APV 92.31% 97.30% 97.56%
BarcodeScanner 100% 100% 100%
OpenManager 100% 100% 79.66%
SuperGenPass 100% 100% 96.77%
TippyTipper 100% 100% 100%
VuDroid 100% 100% 100%

Table 5.4: Run-time coverage for the 6 selected apps.

some view, followed by a SetListener operation to associate a listener with this result

view. For each FindView 2 operation in one branch, due to the control-flow-insensitive

nature of the analysis, views specific to the other two branches are also included in

set solutionResult , corresponding to the “results” column. Then, the propagation of

views from FindView 2 to SetListener further affects set solutionReceiver , correspond-

ing to the “receivers” column. In short, the lack of flow-sensitive treatment renders

the analysis imprecise for this particular case.

The conclusion from these case studies is that, for these six applications, the

precision of the analysis is very close to (and in some cases the same as) the per-

fect solution. This indicates that static modeling of inputs/output of GUI-related

operations can be performed with high precision.

5.4.3 Case Studies of GUI Structure and Behavior

As discussed earlier, in addition to traditional reference analysis queries about the

possible values of view-typed variables, the analysis output can also provide structural

and behavioral information about the GUIs themselves: specifically, (1) the GUI

widget structure for each window, and (2) the application-specific event handlers

associated with these widgets. Using the same six applications described earlier, we

performed case studies to evaluate the precision of the analysis solution with respect to
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this information. These results have direct relevance to existing model-based testing

approaches for Android [55, 105, 122, 123], where knowledge of GUI hierarchies and

event handlers is needed to create GUI models.

In the case studies we examined the windows, views, and associated event handlers

reported by the static analysis. We then tried to achieve run-time coverage of these

entities, or to confirm that that such coverage cannot be achieved in any run-time

execution. Specifically, for each window w (an activity, a menu, or a dialog reported

by our analysis), the goal was to display window w on the screen. Next, for each pair

(w, v), where the analysis reported view v as part of the GUI hierarchy of w, the goal

for run-time coverage was to display the widget corresponding to v when window w

was active. To make the case study effort feasible, we focused on views v for which

the analysis reported at least one application-defined event handler h associated with

v, and on windows w containing at least one such v. Finally, for each triple (w, v, h),

where handler method h was associated with v in the analysis solution, the goal was

to invoke h by triggering some event on the v, when v was displayed as part of w.

Table 5.4 shows the coverage measurements (as percentages) for the six applica-

tions. In most cases, 100% coverage can be achieved, indicating a low false positive

rate of the analysis. Similar to the treatment discussed at the end of Section 5.4.2,

dead code was excluded from these measurements.

Case studies For those elements that could not be covered at 100%, we investigated

the source code to understand why coverage is infeasible and thus determine why the

analysis is imprecise for these cases. The result of this investigation is discussed

below.
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In APV, there is a dialog to display an error message when PDF rendering cannot

be done successfully. It requires a very specific corrupted PDF file input to craft a

test execution that can cover the dialog, and further the associated views and event

handlers. However, we were unable to obtain such a PDF file from the application

developers6 or to create one ourselves. If such a PDF file were available, 100% coverage

would have been achieved.

In OpenManager, as discussed in Section 5.4.2, due to the flow-insensitive na-

ture of the analysis, some views are falsely considered possible receivers for certain

SetListener operations. As a result, resolved listener objects and the correspond-

ing event handler methods would be falsely associated with these views. Given the

high cost of a flow-sensitive reference analysis, addressing this imprecision efficiently

remains an interesting open question.

In SuperGenPass, one event handler method onNothingSelected cannot be cov-

ered by any run-time execution. It is associated with a drop-down list view (more

precisely, an android.widget.Spinner), and it is supposed to be invoked when an

empty “default” item is defined in the application and selected at runtime. However,

such a “default” item is not defined in this particular application, so, correspondingly,

coverage of onNothingSelected is indeed infeasible.

Despite these examples of imprecision, the overall conclusion is that the GUI

hierarchies and the related event handlers in the studied applications can be inferred

precisely. This is a promising indication that precise reverse engineering of GUI

models for Android through static analysis is feasible.

6http://goo.gl/IhtY05

141



5.4.4 Discussion

The evaluation strongly suggests that real-world applications commonly use the

Android features we aim to model, and that our approach analyzes these features with

high precision and low running time. This makes the proposed analysis a promising

building block for a variety of other analyses for Android.

5.5 Summary

Building a foundation of static analyses for Android is essential for new compile-

time and run-time techniques and tools in this increasingly important area of comput-

ing. We propose the first static analysis to focus on GUI-related Android objects. The

analysis defines abstractions of views (including menus), activities, dialogs, and listen-

ers. It models the flow of such objects, the effects of Android operations, and the rel-

evant structural relationships, including associations of views with activities/dialogs

and listeners, and parent-child view relationships. Our constraint-based algorithm

exhibits high precision and low cost. This analysis is an important building block

for existing and future compiler analyses, profiling techniques, static error checkers,

security analyses, and testing approaches.

142



CHAPTER 6: Static Analysis of the Android Activity Stack

In the previous chapter we proposed a static reference analysis for GUI objects

in Android software. The focus was the creation, propagation, and interaction of

Android GUI objects. In this chapter, we consider other aspects of the Android run-

time behavior—activity stacks and activity lifecycles—which are at the core of the

Android application execution model.

As discussed earlier, an activity is an important application component that rep-

resents an on-screen window for users to interact with. Responding to certain user

events and system events, one activity may start another to display new GUI hier-

archies. For example, the ConnectBot app [26], a popular SSH client for Android,

has an activity to display a list of SSH servers. When the user selects one such

server in the list, a new activity is started to display the login screen and later the

SSH session upon successful authentication. Furthermore, the same activity can be

started by activities defined in other apps as well. For example, the user may click

on a link to an SSH server displayed in a web browser app, and start the activity

defined in ConnectBot for a connection to that server. When the user is done with

the SSH connection, the activity in ConnectBot is dismissed and destroyed while the

web browser app resumes. Although the activities are implemented by two different

apps, what the user perceives is still one integrated app. The Android platform allows

such seamless user experience by running the activities in the same task.
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A task is a collection of activities relevant to the currently active user interactions.

In most cases, these activities are organized in a stack, referred to as an activity stack.

When one activity starts another, the new one is pushed on the top of the stack and

takes focus. The previous activity is stopped but still kept in the stack. When the

BACK button is pressed, the top activity on the stack is popped and the previous

activity is resumed and brought back to the foreground. If the user keeps pressing

the BACK button, the control of execution will ultimately go to the HOME screen,

an activity of the special Launcher app running in another task. At this point, the

user could either go into other apps or get back to the original app. This behavior is

made possible by maintaining multiple tasks (each with its own activity stack) in the

background.

Depending on the state of the activity stack, the accessible user events are differ-

ent, leading to different feasible sequences of method calls. Modeling the semantics

of the activity stack is a foundational requirement for modeling of control/data flow

of an Android application, which in turn is a critical building block for many other

software analyses and tools for Android. One can draw an analogy with the call stack

of an ordinary Java program: static modeling of the possible states of the call stack

is a key concern of interprocedural control-flow and data-flow analysis. However, the

behavior of the activity stack is significantly more complicated, as described shortly.

Furthermore, this behavior drives other critically-important behaviors, including the

sequence of calls to manage the lifecycle of activities, and the flow of data between

activities.

144



6.1 Background and Example

Recall from Chapter 4 that activities have well-defined lifecycles. Callback meth-

ods can be defined to handle different stages of the activity lifecycle. For example, an

activity is visible and can respond to user events only in between calls to its onResume

and onPause callback methods. These two lifecycle callback methods define the fore-

ground lifetime of an activity. When the execution is outside the foreground lifetime

of an activity, either before onResume or after onPause, it is impossible to trigger an

event handler method as a response to a user event performed on a GUI object in

this activity.

The pairing of onResume and onPause defines an ordering constraint with respect

to one single activity. That is, for each activity object, onPause can only be called

after onResume. There are also ordering constraints between methods that involve

multiple activities. Informally, when an activity starts another, some methods must

be called to (1) pause the execution of the current activity, and (2) create and start

the new activity. On the other hand, when execution goes from a current activity back

to a previous activity, some other methods must be called to (1) stop and destroy the

current activity, and (2) resume the previous activity. Understanding such invocation

sequences is the basis for modeling control/data flow of an Android application.

One key prerequisite for the analysis of method invocation sequences is to model

the behavior of the activity stack. The effects and corresponding invoked methods of

an activity launch or termination event are dependent on the state and changes in

the activity stack. For example, the handling of certain start activity event needs to

examine and even manipulate the activity stack. When BACK button is pressed, the

state of activity stack determines what the previous activity is. In the rest of this
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n1:HostListActivity
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standard              

n3:PortForwardListActivity

 s t anda rd

 standard-clearTop

 singleTop

 s t anda rd

Figure 6.1: A partial activity transition graph for ConnectBot.

section, the complicated behavior of activity stacks and the invocation sequence of

activity lifecycle callbacks is demonstrated through an example.

6.1.1 Example

ConnectBot [26] is an SSH client for Android. Three activities in this app are

relevant to our discussion: HostListActivity displays a list of available SSH servers;

when a server is selected, ConsoleActivity displays a terminal view to host the SSH

session; PortForwardListActivity allows the user to edit the port forward list for

a selected server.

The starting point of understanding the activity stack is the modeling of transi-

tions between activities. As proposed by existing work (e.g., [11]), activities and the

transitions between them can be represented in an activity transition graph. Figure 6.1

shows part of such a graph for ConnectBot [26]. In this graph, each node represents

the top activity in the current activity stack. The edges represent the events that

may change the activity stack, including particularly the top activity (thus the name

“activity transition”). The transition events include two categories: launch of an

activity and termination of an activity. For simplicity, edges for activity termination
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(n2
finish−−−−→ n1, n3

finish−−−−→ n2, and n3
finish−−−−→ n1) are omitted from the figure. The

shown edges all represent events of activity launch, and they are annotated with the

associated event configurations.

Main activity Each Android application must define a main activity. The main

activity is the first displayed window when a user launches the application. In this

particular example, HostListActivity (represented by node n1) is the main activity.

When ConnectBot is launched, this activity is created and shown to the user. Concep-

tually, the pseudocode for the executed statements is “a = new HostListActivity;

a.onCreate(...); a.onStart(); a.onResume()”. A HostListActivity instance

is first created, and then the lifecycle callback methods (e.g., onStart()) are invoked

in the specific sequence on this instance. At this point, the activity stack contains

only one activity, and can be written as (ξHostListActivity) where ξHostListActivity rep-

resents an object of type HostListActivity. If the BACK button is pressed now,

the activity will be stopped and popped from the stack, and control will return to

the HOME screen. The resulting behavior is equivalent to a sequence of statements

“a.onPause(); a.onStop(); a.onDestroy()”.

Launch with standard When a user selects a server shown by HostListActivity,

the GUI event listener invokes API method startActivity in order to start an in-

stance of ConsoleActivity to display the SSH session. This activity launch uses the

standard configuration and corresponds to edge n1
standard−−−−−→ n2 in the graph. Here

standard is the default and most commonly used configuration for an activity launch

event. Assuming that variable a references the HostListActivity instance, the run-

time behavior is equivalent to the sequence of statements “a.onPause(); b = new

ConsoleActivity; b.onCreate(...); b.onStart(); b.onResume(); a.onStop()”.
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In addition, the newly created ConsoleActivity instance is pushed on to the activ-

ity stack, changing it to (ξHostListActivity, ξConsoleActivity) where the rightmost element

represents the top of the stack. Similar execution sequences can be observed when

user selects a server to edit its port forward list (edge n1
standard−−−−−→ n3).

Termination When a user finishes the SSH connection with ConsoleActivity and

presses BACK button with the intention to return back to HostListActivity, the

behavior occurs: “b.onPause(); a.onRestart(); a.onStart(); a.onResume();

b.onStop(); b.onDestroy()”, assuming a references the HostListActivity in-

stance and b references the ConsoleActivity instance. The ConsoleActivity in-

stance ξConsoleActivity is popped from the stack and destroyed, changing the stack

back to (ξHostListActivity). Note that this transition corresponds to the omitted edge

n2
finish−−−−→ n1, which is different from n2

standard−clearTop−−−−−−−−−−−→ n1 (discussed shortly).

Other omitted edges (e.g., n3
finish−−−−→ n1) that represent activity termination have

similar behavior.

Launch with singleTop When a user is in an SSH session with ConsoleActivity,

one interesting action is to connect to another SSH server whose URL is shown on the

screen. In such a case, a launch activity event is triggered to start a ConsoleActivity

with the singleTop configuration, in order to host the new SSH session. The

singleTop configuration requests the Android platform to reuse the activity instance

on top of the stack if it is of the same type as the specified target activity. When

this reuse condition is met, no new activity instance is created and the callback

method onNewIntent is called on the existing top activity instance. For the edge
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n2
singleTop−−−−−→ n2, this is indeed the case and the corresponding behavior can be mod-

eled as “b.onPause(); b.onNewIntent(...); b.onResume();” (here variable b ref-

erences the top of stack activity instance ξConsoleActivity). In this process, the activity

stack does not change.

Launch with standard-clearTop The ConsoleActivity also provides a short-

cut button that allows a user to navigate to HostListActivity. The handler for

the button starts HostActivity with configuration standard-clearTop (or simply

clearTop since standard is the default implicit configuration). This corresponds to

the edge n2
standard−clearTop−−−−−−−−−−−→ n1, and, as mentioned earlier, is different from the omit-

ted edge n2
finish−−−−→ n1. The clearTop configuration requests the Android platform

to search for existing instance of the specified target activity. If such an instance is

found in the activity stack, all the other instances on top of this matched instance will

first be removed (thus the name clearTop). Next, when starting the target activ-

ity, the existing matched instance may or may not be reused, depending on whether

singleTop or standard is specified. When the configuration contains standard, the

existing matched instance will be removed as well, and a new instance will be cre-

ated and pushed to the stack. For this example, a HostListActivity instance does

already exist in the stack and the specified configuration is standard-clearTop, so

the stack will change from (ξHostListActivity, ξConsoleActivity) to (ξ′HostListActivity), where

ξ′HostListActivity is a new instance of HostListActivity. This behavior corresponds

to the sequence “b.onPause(); a.onDestroy(); a2 = new HostListActivity;

a2.onCreate(...); a2.onStart(); a2.onResume(); b.onStop(); b.onDestroy();”.

Launch with singleTop-clearTop For the same transition between n2 and n1, the

configuration singleTop-clearTop allows reuse of the matched HostListActivity.
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If the launch activity event were configured with singleTop-clearTop, the stack

after the event would be (ξHostListActivity) and the executed statements would be

“b.onPause; a.onNewIntent(...); a.onRestart(); a.onStart(); a.onResume();

b.onStop(); b.onDestroy();” where variable a references ξHostListActivity and vari-

able b references ξConsoleActivity in the original stack before the event. Note that

the existing HostListActivity is reused, and onNewIntent is called on the existing

instance.

Launch with reorderToFront Another way to reuse a matched activity is to

trigger the launch event with reorderToFront. The effect of this configuration is

to pull the matched activity instance off the stack and place it back on the top.

All other instances remain intact in the stack. If such a configuration were to be

used in this example (instead of singleTop-clearTop), the sequence of executed

statements “b.onPause(); a.onNewIntent(...); a.onRestart(); a.onStart();

a.onResume(); b.onStop();” would be slightly different, since onDestroy is not

called on the ConsoleActivity instance. Correspondingly, the resulting activity

stack would be (ξConsoleActivity, ξHostListActivity) with the HostListActivity instance

reordered to the top and the ConsoleActivity instance still in the stack.

6.2 Semantics of Relevant Android Constructs

The exact runtime behavior of an activity launch or termination event is at the

core of understanding the interactions between activities. As demonstrated in the

earlier section, this behavior depends heavily on the activity stack. For example, the

state of the stack determines whether a new activity instance needs to be created,
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which specific activity gets displayed next, and how data are communicated between

which specific activities.

A static analysis to model the state and changes of the activity stack is highly

desirable as foundation for many other compile-time analysis techniques such as static

error checking, security analysis, test generation, and automated debugging. To the

best of our knowledge, such a static analysis does not currently exist. The goal of

this work is to develop semantic foundations and analysis algorithms for solving this

problem. We propose a principled solution, starting with a definition of the semantics

of relevant Android constructs (this section) and using it to define a static analysis

for it (next section). As a first step towards solving the full problem, this solution

focuses only on cases where the application runs in one single task; future work will

consider the analysis of multiple tasks.

6.2.1 Syntax and Semantics of ALiteStk

This section describes ALiteStk, an extension of ALite (defined in Section 5.2.2)

which considers additional Android constructs that are relevant to modeling of activ-

ity stacks. For the syntax and semantics of other constructs, the reader should refer

to Section 5.2.

First, the semantic domain is extended to include the activity stack δ ∈ Loc ×

Loc × . . .× Loc. Specifically, δ = (ξc1 , ξc2 , . . . , ξcn) is a sequence of activity instances

representing an activity stack, where ξc1 and ξcn are the bottom activity and the

top activity, respectively. Recall that ξc ∈ Loc is a heap location labeled with the

class c it instantiates. Here we will focus only on the classes c ∈ ActivityClasses . If

necessary, different instances of the same activity class are additionally labeled with
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superscripts (e.g., ξ1
c and ξ2

c ) to avoid confusion. Note that for any two elements ξci

and ξcj in the stack, they can be of the same activity class (ci = cj), but they cannot

be the same instance (ξci 6= ξcj). With this extension, the semantic rules are now

written as 〈s, ρ, η, δ〉 → 〈ρ′, η′, δ′〉, which describes the changes in environment, heap

and activity stack when statement s is executed. The rules introduced in Section 5.2.2

can be easily extended by noting that δ′ = δ because the operations discussed there

do not change the activity stack.

The second aspect of the extension is to consider operations that do affect the

activity stack. Such operations are calls to platform APIs that may trigger activity

launch or termination. There are many variations of such API calls, but conceptually

they can be abstracted as the following 6 types of operations: standard, singleTop,

standard-clearTop, singleTop-clearTop, reorderToFront, finish. Examples of

these operations have already been shown in Section 6.1.

Operation standard This operation starts a specified target activity and pushes

it to the stack, regardless of the state of the original stack. It is the default and most

commonly used way to start an activity. The semantic rule is

[Standard] 〈m(x), ρ, η, (ξc1 , ξc2 , . . . , ξcn)〉→〈ρ, η, (ξc1 , ξc2 , . . . , ξcn , ξρ(x))〉

where method call m(x) represents a standard operation to start an instance of the

activity class c specified by x (i.e., c = ρ(x)). In a minor abuse of notation, here c

denotes both the activity class c and its name.

Operation finish This operation terminates the current activity—the one on top

of the stack—and returns to the previous activity. The semantic rule is

[Finish] 〈m(), ρ, η, (ξc1 , ξc2 , . . . , ξcn)〉→〈ρ, η, (ξc1 , ξc2 , . . . , ξcn−1)〉

If the stack becomes empty due to this operation, an additional effect is to exit the

application.
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Operation singleTop This operation and the other three operations discussed

below are all activity launch operations that first attempt to find an existing instance

of the specified target activity class, and then decide what to do next based on the

result of the search. The singleTop operation compares the type of the current top

activity with the target activity class. If they are the same, no new activity instance

is created and instead the current top activity is reused. When satisfying activity

instance cannot be found, the effect of the operations is the same as the standard

operation. Thus, the rule for a singleTop operation is

[SingleTop] 〈m(x), ρ, η, (ξc1 , ξc2 , . . . , ξcn)〉→{
〈ρ, η, (ξc1 , ξc2 , . . . , ξcn)〉, if ρ(x) = cn

〈ρ, η, (ξc1 , ξc2 , . . . , ξcn , ξρ(x))〉, otherwise

For the remaining three operations, the behavior is similar: if the search for an

existing instance of the target activity class does not succeed, the effect is the same

as standard. Otherwise, each operation has its own specific behavior. To simplify

the presentation, we will describe the semantics of the remaining operations in cases

when the search does find a matching activity instance.

Operation standard-clearTop A standard-clearTop operation searches the

activity stack from top to bottom to find the first activity of the same class as the

target activity class. Then, it removes all activity instances above the matched one,

as well as the matched one itself. Next, a new instance of the target activity is created

and pushed to the stack. This behavior is captured by rule

[Standard-ClearTop] 〈m(x), ρ, η, (ξc1 , ξc2 , . . . , ξci−1
, ξci , . . . , ξcn)〉→

〈ρ, η, (ξc1 , ξc2 , . . . , ξci−1
, ξ′ci)〉

where ρ(x) = ci and ci 6= cj for i+1 ≤ j ≤ n. Note that ξ′ci is a newly created activity

instance, and thus is different from ξci in the old stack.
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Operation singleTop-clearTop This operation is very similar to the previous

one, but differs in that it will reuse the matched activity rather than creating a new

one. The semantic rule is

[SingleTop-ClearTop] 〈m(x), ρ, η, (ξc1 , ξc2 , . . . , ξci−1
, ξci , . . . , ξcn)〉→

〈ρ, η, (ξc1 , ξc2 , . . . , ξci−1
, ξci)〉

where ρ(x) = ci and ci 6= cj for i+ 1 ≤ j ≤ n. The activity instance ξci is reused.

Operation reorderToFront Similar to the previous two operations, reorderToFront

also searches the activity stack from top to bottom to find the first matched activity,

one that is of the same type as the target. Then, it removes this instance from the

middle of the stack and pushes it back to the top of the stack:

[ReorderToFront] 〈m(x), ρ, η, (ξc1 , ξc2 , . . . , ξci−1
, ξci , ξci+1

, . . . , ξcn)〉→
〈ρ, η, (ξc1 , ξc2 , . . . , ξci−1

, ξci+1
, . . . , ξcn , ξci)〉

where ρ(x) = ci and ci 6= cj for i + 1 ≤ j ≤ n. The activity instance ξci is reordered

to the top of stack and reused, and no new activity instance is created.

Activity lifecycle callbacks Activities have well-defined lifecycles, and a series of

lifecycle callback methods are invoked at different stages. As the operations discussed

above are executed, the activities being added to or removed from the stack will

transition between these stages. So, in addition to the semantics defined by the rules,

another aspect of the semantics is the invocation of specific sequences of lifecycle

callbacks. Based on the state and changes of the activity stack, such invocation

sequences can be easily defined. The details of all such sequences, for each of the

six rules from above, are already demonstrated by the examples in Section 6.1. For

example, for a singleTop operation in the case when the stack top matches the

target activity class, the top activity instance is subjected to the sequence of lifecycle

callbacks onPause(), onNewIntent(...), onResume().
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Operations rotate, home, and power In addition to the operations discussed

earlier in this section, there are other operations that can invoke sequences of activity

lifecycle callback methods. These operations correspond to the ROTATE, HOME,

and POWER transitions defined in Chapter 4, and are thus called rotate, home, and

power operations. The rotate operation is triggered when the user rotates the device

screen. When this happens, (1) the top activity on stack is popped and destroyed,

and (2) a new instance of the same activity class is created and pushed to the stack.

This behavior can be expressed by the following semantic rule

[Rotate] 〈m(), ρ, η, (ξc1 , ξc2 , . . . , ξcn−1 , ξcn)〉→〈ρ, η, (ξc1 , ξc2 , . . . , ξcn−1 , ξ
′
cn)〉

where ξcn is the top activity before the operation and ξ′cn is the newly created

instance from the same activity class cn. Assuming the top activity ξcn is refer-

enced by variable a, the corresponding conceptual sequence of executed statements

is “a.onPause(); a.onStop(); a.onDestroy(); b = new cn; b.onCreate(...);

b.onStart(); b.onResume()”. The home operation occurs when the user goes to

the HOME screen and immediately goes back; the power operation occurs when

the user locks the screen and immediately unlocks it. These two operations do not

change the activity stack. However, when a home or a power operation is triggered,

the top activity instance in the activity stack is subjected to the sequence of lifecy-

cle callbacks “onPause(), onStop(), onRestart(), onStart(), onResume()” or the

sequence “onPause(), onResume()”, respectively.

6.3 Static Analysis of the Activity Stack

Given the abstracted language ALiteStk, we aim to develop a static analysis of

the activity stack, modeling its state and changes. The input to such an analysis
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is an activity transition graph which encodes the transitions between activities. In

this graph, each node corresponds to an activity, and each edge between two nodes

corresponds to one possible transition between them. Similar representations can be

found in existing work (e.g., [11]). However, we additionally annotate the edges with

the abstracted operations for activity launch from ALiteStk, to enable an analysis

of the activity stack. The finish operation is generally feasible for each activity, as

a response to either pressing the BACK button or some other user event. However,

we do not represent it as part of this input graph because the target of a
finish−−−−→ edge

depends on the state of the activity stack and thus these edges instead are actually

part of the analysis output. Operations rotate, home, and power are also generally

feasible for each activity. Although they are not included as part of the activity

transition graph, we do consider them later for the analysis of the activity stack. An

example of an activity transition graph is shown in Figure 6.1. In the rest of this

section, we first discuss the construction of this input graph. Then we present the

analysis algorithm which takes this graph as input and produces the possible states

of the activity stack.

6.3.1 Construction of Activity Transition Graph

The starting point for the construction of the activity transition graph is the main

activity. The main activity is the activity specified by the application to be displayed

when it is first launched. The operation to start this activity is performed by the

platform, and is thus not part of the analyzed code. Correspondingly, there will not

be an incoming edge for the main activity node in the graph to represent such an

activity launch operation. Starting from the main activity, it is desirable to find all
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possible target activities, and further to find their targets as well. During this process,

nodes and edges are constructed as necessary, and added to the graph. The graph is

built by repeating this process until no new edges can be constructed.

Given an activity, the set of target activities it can transition to are determined

by the set of all reachable activity launch API calls, i.e. call statements in reachable

methods. Recall that the static reference analysis introduced in Chapter 5 provides

the ability to retrieve the set of GUI objects associated with each activity, and the

set of event handler methods associated with each GUI object. We can leverage this

existing analysis to find all the GUI objects associated with the given activity and

their event handlers. Then the set of these event handlers and their transitive callees

are the set of reachable methods for this activity. In the actual implementation,

additional processing is performed to take into account the execution of activity

lifecycle methods, and also methods made reachable due to menus and dialogs.

Next, for each source activity src and each reachable activity launch API call, the

analysis needs to understand and extract the target activity tgt and the corresponding

abstract operation op, and create a new edge src
op−→ tgt . One commonality among

all the activity launch API calls is that an intent object is used to specify the target

activity and the launch configurations, which correspond to tgt and op, respectively.

There are several existing techniques [11, 20, 42, 82] for analysis of intent objects.

Typically, these existing techniques leverage a data-flow analysis to infer the content

of an intent object at each activity launch call and to determine the target activity.

Similar techniques can be used to additionally identify the launch configurations,

since they are set up via API calls that are similar to those used to set up the target

activity of an intent. These launch configuration parameters imply the type of the
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Figure 6.2: Output stack transition graph for the input activity transition graph in
Figure 6.1.

corresponding abstract operation op. Note that the type of abstract operation op

also depends on the launchMode setting of the target activity defined in the Android

manifest file. Our implementation handles such manifest settings as well.

6.3.2 Analysis Algorithm

With the activity transition graph, we can build an analysis to compute all possible

activity stack states via graph traversal. For practical considerations, we further

constrain the problem with the condition that each activity class has at most one

instance in each of the valid stack states. In other words, for any two activity instances

ξci and ξcj in an activity stack, the activity classes ci and cj should be different

(ci 6= cj).

The output of this analysis is a stack transition graph which encodes the possible

stack states and the transitions between them. Figure 6.2 shows the output stack

transition graph for the input activity transition graph shown in Figure 6.1. Each

node in the stack transition graph represents one possible valid activity stack. Activity

instances in the stack are simply represented by the activity class name since no two

distinct instances would have the same name. Each edge between two nodes is labeled

with the abstract operation that triggers the transition between the two corresponding
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Algorithm 6.1: ActivityStackAnalysis(ATG)
Input: Activity transition graph ATG = (Nin, Ein), main activity node main ∈ Nin
Output: Stack transition graph STG = (Nout, Eout)

// The initial stack contains only the main activity. Act extracts the activity name from a

// Nin node. MakeNode finds or creates an STG node for a given stack.

1 initStack ←MakeNode(〈Act(main)〉)
// Initialize the output graph to contain the stack node representing the initial stack.

2 Nout ← {initStack}
3 Eout ← ∅

// MakeList creates a list containing only the specified element. The created list supports

// RemoveFirst, removing the first element from the list, and AddFirst, inserting an element

// at the beginning of the list.

4 worklist ←MakeList(initStack)
5 while worklist is not empty do
6 stack ← worklist .RemoveFirst()
7 src ← stack .top()

// Considers the activity launch operations.

8 foreach src
op−−→ tgt ∈ Ein do

// ConstructNewStack builds a new stack node based on the given input and the

// semantic rules defined in Section 6.2. null is returned if the new stack

// contains two instances from the same activity class.

9 newStack ← ConstructNewStack(stack , op, tgt)
10 if newStack 6= null then
11 if newStack /∈ Nout then
12 worklist .AddFirst(newStack)
13 Nout ← Nout ∪ {newStack}

14 Eout ← Eout ∪ {stack
op−−→ newStack}

// Considers finish operation. ConstructNewStack clones stack and pops the top element.

15 newStack ← ConstructNewStack(stack , finish)
16 if newStack 6= ∅ then
17 if newStack /∈ Nout then
18 worklist .AddFirst(newStack)
19 Nout ← Nout ∪ {newStack}

20 Eout ← Eout ∪ {stack
finish−−−−→ newStack}

activity stacks. When multiple operations can trigger the same transition, multiple

edges are created. Note that implicitly for each node, there are three default self-

edges to represent the rotate, home, and power operations. For simplicity, we do not

show these edges in the figure or in the algorithm described below.

Algorithm 6.1 performs an iterative depth-first traversal of the activity transition

graph to implement the analysis. When the application first launches, the initial

activity stack contains only the main activity and is the starting point of traversal.
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Lines 1–4 reflect this initialization. Next, we consider both the activity launch oper-

ations (lines 8–14) and the activity termination operation (lines 15–20). A candidate

stack newStack is first built from the current stack stack , the operation op, and the

target activity (if it is a launch operation) using a helper function ConstructNew-

Stack (lines 9 and 15). The helper function is straightforward to implement based

on the semantic rules defined in Section 6.2. The candidate new stack is discarded

if it is invalid, meaning that it contains multiple activity instances from the same

class. When it is valid, a new edge stack
op−→ newStack should be added to the output

graph (lines 14 and 20). Before doing that, if the node for newStack does not already

exist in the output graph node set Nout, it should be created and saved in Nout, and

also added to worklist (lines 11–13 and lines 17–19). When it already exists in Nout,

the traversal does not continue along its direction, which is standard for depth-first

traversal.

6.3.3 Analysis Implementation

Our implementation is based on the static reference analysis introduced in Chap-

ter 5, which itself is based on the Soot analysis framework [109]. An extension needed

for this work is the analysis of Android intent objects, in order to construct the ac-

tivity transition graph. This extension uses techniques similar to those from existing

work (e.g., [11, 20, 42, 82]), but focuses on explicit intents only, and implements the

additional characterization of transition operation types (i.e., the transition edges are

labeled with abstract operations such as standard and singleTop).
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6.4 Control-Flow Analysis of Lifecycle Callbacks

In this section, we describe an extension of our technique which targets a standard

and fundamental problem in static analysis: control-flow analysis. Since data-flow

analysis has to model the program’s control flow (in addition to the dataflow do-

main under consideration), control-flow analysis is also a key component of data-flow

analysis.

Typically, control-flow analysis is performed on some representation of the pro-

gram. The standard such representation is the interprocedural control-flow graph

(ICFG). This graph combines the intraprocedural control-flow graphs (CFGs) of the

program’s procedures. Nodes correspond to statements, and intraprocedural edges

show the control flow inside a procedure. The CFG for a procedure has a dedicated

start node and a dedicated exit node. Each call is represented by two nodes: a call-

site node ci and a return-site node ri. There is an interprocedural edge from a call-site

node to the start node of the called procedure; there is a corresponding edge from the

exit node to the return-site node. An ICFG path that starts from the entry of the

main procedure is valid if the interprocedural edges along the path are matched [98].

One way to express the validity condition is through a standard context-free gram-

mar [91]: valid → ci matched | matched where matched → ci matched ri matched | ε.

Here non-terminal matched represents paths along which each call-site node ci is

matched with the corresponding return-site node ri. A valid path allows for yet-

unmatched call-site nodes; these unmatched nodes correspond to the current state of

the run-time call stack, and are often referred to as a call string.

The conceptual goal of control-flow analysis is to determine the set of all valid

paths. In an actual static analysis, this goal needs to be refined: for example, since
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the number of valid paths is typically very large (and often infinite), some abstractions

need to be defined based on the analysis goals. But, at its essence, the goal of control-

flow analysis is to find all valid paths. The natural way to achieve this is to perform

a graph traversal augmented with a call stack containing the currently-unmatched

call-site nodes ci. Whenever the traversal attempts to extend the current path with

a new edge, the stack is consulted to determine if the extended path is valid (i.e.,

when the new edge leads to ri, the top of the stack must be ci). In addition, the stack

is updated as necessary (e.g., by pushing ci or popping ri). This abstracted view of

control-flow analysis is used throughout the rest of this section.

For a framework-based platform such as Android, the application does not contain

a main procedure from which control-flow paths start. The interaction between an

application and the platform is through callbacks: the high-level view of the control

flow is as a sequence of calls from (unknown) platform code to specific application

methods. In this section we are specifically interested in callbacks to activity lifecycle

methods such as onCreate and onDestroy. (Section 6.1 provides several examples

of such methods.) We focus on these methods because the proper management of

the activity lifecycle is an essential concern for Android developers (e.g., to avoid

leaks [33,102,122]) and these methods define the core “skeleton” of the application’s

control flow.

Based on these observations, we consider abstracted interprocedural paths in which

the only calls to and returns from lifecycle callback methods are represented, and all

other nodes are abstracted away. Furthermore, since a lifecycle method completes

execution before any other lifecycle method starts, the abstracted paths are always of

the form ci ri cj rj ck rk . . . and will be represented simply as mi mj mk . . . where, for
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example, ci is an unknown call-site node in the platform code that invokes application-

defined callback methodmi. Thus, we are interested in a specialized version of control-

flow analysis which produces the set of all valid sequences of invocations of application-

defined lifecycle callback methods.

A traditional approach for performing such an analysis is to create an abstract

main procedure which captures all possible behaviors of the platform code, and then

to analyze the abstract main together with the application code using standard in-

terprocedural control-flow analysis. As an example, consider FlowDroid [10], a flow-

and context-sensitive taint analysis which models the effects of callbacks by creating

a wrapper main method. An example of such a wrapper method for the example from

Section 6.1 is shown in Figure 6.3. It is represented as a while-loop, in each iteration

of which some of the activities in the app may get the opportunity to execute. For

example, execution of HostListActivity is represented by lines 4–18. First, line 5

creates a HostListActivity object. This object creation is not a call to lifecycle

callbacks, but is part of the generated wrapper method and included for complete-

ness. Then, it continues with a call to onCreate and ends with a call to onDestroy.

The region between onCreate and onDestroy represents the entire lifetime of this

activity. The two loops at lines 7–16 and lines 10–14 represent the visible lifetime

and foreground lifetime of the activity, respectively. Similarly, they are bounded by

pairs of lifecycle callbacks, with the slight variation for visible lifetime that a call to

onRestart may get executed before calling onStart. The execution of onRestart is

conditional because it is not called the first time an activity is started. The innermost

loop (line 12) is an event loop to handle user actions (e.g., click on a button), and it

is represented as calls to event handler callbacks (e.g., onClick), details of which are
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1 void wrapperMainMethod() {

2 while (...) {

3 // assume activities can run in any order

4 if (...) {

5 HostListActivity n1 = new HostListActivity();

6 n1.onCreate(...);

7 while (...) { // loop for activity visible lifetime

8 if (...) n1.onRestart();

9 n1.onStart();

10 while (...) { // loop for activity foreground lifetime

11 n1.onResume();

12 while (...) { ... } // event loop to handle user actions

13 n1.onPause();

14 }

15 n1.onStop();

16 }

17 n1.onDestroy();

18 }

19 if (...) {

20 ConsoleActivity n2 = new ConsoleActivity();

21 ... }

22 if (...) {

23 PortForwardListActivity n3 = new PortForwardListActivity();

24 ... } } }

Figure 6.3: FlowDroid-based wrapper main method for the example shown in Sec-
tion 6.1.

omitted for simplicity. Lines 19–24 are the generated code for the other two activities,

which has similar structures and thus is not displayed in detail. The code for each

activity is enclosed in an if-statement to express the intended behavior that each

activity may or may not execute in one iteration of the outer while-loop, reflecting

the assumption that activities may execute in an arbitrary order. In this example,

we show calls to all the callback methods for each activity, while in the actual im-

plementation of FlowDroid, calls are put in the wrapper method only if the resolved

call target is defined in the application code. In other words, line 13 would not exist

in a real wrapper method generated by FlowDroid because HostListActivity does

not override the default Activity.onPause lifecycle callback method.
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As discussed, such a wrapper method can capture the control flow of lifecycle

callbacks for each individual activity. However, since this wrapper was designed for

a particular form of interprocedural taint analysis, and not to express the general

control flow, computing the abstracted interprocedural paths based on this approach

has certain limitations. Specifically, one cannot apply standard control-flow analysis

on this wrapper to determine all possible sequences of callbacks.

The key limitation is that this approach does not model transitions and inter-

actions between activities. As demonstrated in Section 6.1, lifecycle callbacks from

different activities could interleave because the activity lifecycles are nested. Paths

with such interleaved calls are not represented by this wrapper method. Consider an

application with only the main activity A and one other activity B, and a very simple

execution which (1) launches the app and starts A, (2) starts B from A, (3) presses

BACK and returns to A, and (4) exits the app. In this execution, the lifetime of

B is entirely nested in the lifetime of A. The corresponding subsequences of lifecycle

callbacks for these steps are

1. A.onCreate(...), A.onStart(), A.onResume()

2. A.onPause(), B.onCreate(...), B.onStart(), B.onResume(), A.onStop()

3. B.onPause(), A.onRestart(), A.onStart(), A.onResume(), B.onStop(),

B.onDestroy()

4. A.onPause() A.onStop() A.onDestroy()

The complete sequence is the concatenation of these four subsequences. For the wrap-

per shown in Figure 6.3, there does not exist a control-flow path that expresses this

165



start-to-end sequence of callbacks. Since this approach does not consider such inter-

leaving behaviors for callbacks made on different activities, as a side effect, another

important callback onNewIntent (due to abstract operations such as singleTop) is

not considered either. Thus, a conservative solution to the control-flow problem can-

not be computed using the wrapper main from FlowDroid. In addition, there is

inherent imprecision in this approach, as it assumes that activities can be ordered ar-

bitrarily, while in reality such ordering can be significantly constrained by the possible

activity transitions and the configurations associated with them.

The technique introduced in the previous section models the semantics of the

activity stack, and can be used to address the limitations of this wrapper-based

approach for control-flow analysis of lifecycle callbacks. Given an output STG, there

is a clear mapping between each STG edge and its corresponding sequence of lifecycle

callbacks. Paths in the STG correspond to abstracted interprocedural paths. The

number of STG paths is infinite, so the number of abstracted interprocedural paths

(i.e., sequences of lifecycle callbacks) is also infinite. As typical in static analysis, this

infinite set should be abstracted by a finite abstraction. The choice of this abstraction,

of course, depends on the goals of the client control-flow analysis. An STG traversal

algorithm can be defined based on this target abstraction, and the current STG path,

together with the associated sequence of callbacks, can be maintained during the

traversal. Note that when STG paths are constructed, their corresponding callback

sequences need to also consider (1) the sequence of lifecycle callbacks to start the main

activity during app launch, as well as (2) the callback sequence to exit the app when

the only activity on the stack is terminated. These additional sequences correspond

to implicit activity launch and activity termination STG edges.
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App
ATG STG

Nodes Edges Nodes Edges

APV 4 6 6 10
Astrid 8 9 10 18
BarcodeScanner 2 1 2 2
Beem 5 5 6 10
ConnectBot 11 12 12 23
FBReader 14 113 195716 391430
K9 7 8 8 14
KeePassDroid 13 42 645 1288
Mileage 12 16 17 32
MyTracks 12 39 144 286
NPR 8 45 1424 2846
NotePad 4 6 4 7
OpenManager 4 3 4 6
OpenSudoku 9 11 9 16
SipDroid 3 3 4 6
SuperGenPass 2 1 2 2
TippyTipper 5 7 8 14
VLC 3 2 3 4
VuDroid 3 6 5 8
XBMC 19 101 64473 138132

Table 6.1: Measurements of activity transition graph and stack transition graph.

6.5 Evaluation

We evaluate the proposed analysis on the same set of 20 open-source Android ap-

plications used in Chapter 5. Figure 6.1 shows the measurements of activity transition

graph and stack transition graph. The implicit STG self-edges due to rotate, home,

and power operations are not included in these measurements. The running time of

this analysis is comparable to that of the static reference analysis in Chapter 5, and

thus omitted. The measurements of nodes and edges in the activity transition graph

are with respect to the subgraph reachable from the main activity. The analysis

of activity stacks is performed on this subgraph to produce the corresponding stack

transition graph.
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Not all activities in every application are reachable and included in the traversed

activity transition graph because (1) we focus only on explicit intents, (2) the anal-

ysis models only behaviors involving a single activity stack, and (3) certain Android

features (e.g., implicit activity launch triggered by TabHost) are not modeled. Work

to handle these features is orthogonal to the core contributions of this chapter, which

are a formal semantics to reason about the behavior of the activity stack, as well

as an algorithm to compute the possible stack states given the activity transition

relationships as the input.

The output of our analysis explicitly represents the behavior of the stack and the

interaction between activities. This output can be used by a client static analysis to

prune infeasible control-flow paths due to constraints of the activity stack behavior,

or by an automated test generation tool to cover more code paths that would be

missing without knowledge of the activity stack.

As a characterization of precision, we also compare our analysis with a hypothet-

ical näıve stack analysis, which assumes arbitrary execution order of activities. The

assumption implies that activities could appear in arbitrary positions of the activ-

ity stack, which is similar in spirit to the approach in FlowDroid [10]. As in our

STG-based analysis, the hypothetical analysis considers only stacks in which each ac-

tivity class has at most one instance. Figure 6.2 shows the result of this comparison.

Column “STG-based” shows the numbers of stacks computed by our stack analysis.

These are the same numbers as those in the “STG Nodes” column in Figure 6.1.

Column “Arbitrary” shows the numbers of stacks that would have been computed

by the hypothetical analysis. This number is defined by
k∑
i=1

P (n, i), where n is the
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App STG-based Arbitrary

APV 6 40
Astrid 10 400
BarcodeScanner 2 4
Beem 6 85
ConnectBot 12 1111
FBReader 195716 62618582404
K9 8 8659
KeePassDroid 645 1359245485
Mileage 17 13344
MyTracks 144 4765344
NPR 1424 109600
NotePad 4 16
OpenManager 4 16
OpenSudoku 9 3609
SipDroid 4 15
SuperGenPass 2 4
TippyTipper 8 205
VLC 3 9
VuDroid 5 15
XBMC 64473 196476518410399

Table 6.2: Numbers of possible activity stacks based on the proposed STG-based
analysis and based on the assumption of arbitrary ordering.

number of reachable activities from the main activity (column “ATG Nodes” in Fig-

ure 6.1), k is the maximum depth of the activity stacks computed by our analysis, and

P (n, i) = n!
(n−i)! . The value of P (n, i) shows the number of distinct stacks of length i

whose elements are selected from the n activities, assuming that no activity appears

more than once in a particular stack. The summation simulates an approach which

considers all activity stacks of length 1, 2, . . . , k. As the differences between the two

columns clearly demonstrate, the hypothetical analysis performs much worse than

our stack analysis. The fundamental problem is the assumption of arbitrary execu-

tion order, due to lack of modeling of ordering constraints. Our analysis specifically

targets such constraints.
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6.5.1 Case Study

The standard abstract operation is the default and the most common way to start

an activity. To the best of our knowledge, existing static analysis techniques for An-

droid have all treated an activity launch as a standard operation. When an activity

is started in this way, the behavior of the activity stack is immediately clear without

further analysis: (1) a new instance of the target activity is created and pushed to the

stack; and (2) when a finish operation occurs for that new instance, it is popped

off the stack and the control returns back to the previous activity, which is well-

defined by the stack state before execution of standard. The ability to determine the

finish transitions allows the augmentation of the activity transition graph to repre-

sent them compactly and to facilitate development of clients of our analysis (e.g., test

generation, program understanding, and correctness checking). Specifically, for each

edge (ξc1 , ξc2 , . . . , ξcm)
finish−−−−→ (ξc′1 , ξc′2 , . . . , ξc′n) in the stack transition graph, we can

augment the activity transition graph with a corresponding edge cm
finish−−−−→ c′n. Con-

sidering again the example shown in Section 6.1, these augmented edges derived from

finish transitions actually refer to the omitted
finish−−−−→ edges in Figure 6.1. Therefore,

one interesting question is the following: how often do the studied applications use

the other “non-standard” ways of activity launch discussed in this chapter? Note that

non-self singleTop transitions such as c1
singleTop−−−−−→ c2 where c1 6= c2 behave similarly

to standard and do not require additional analysis. In the context of this question,

we treat such singleTop operations as if they were standard.

Our experimental measurements show that 3 out of the 20 applications make

use of “non-standard” activity launches (e.g., standard-clearTop). For these apps
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App
k=2 k=4 k=6 k=8

#Seq Length #Seq Length #Seq Length #Seq Length

APV 4 4.00 14 8.93 54 14.20 214 19.54
Astrid 7 6.14 45 12.82 294 19.55 1923 26.29
BarcodeScanner 2 5.00 2 11.00 2 17.00 2 23.00
Beem 4 4.00 14 8.21 54 12.39 214 16.56
ConnectBot 9 6.44 84 13.38 795 20.35 7530 27.31
FBReader 11 7.73 527 15.31 20728 22.11 668642 28.50
K9 3 4.33 9 9.00 32 13.03 122 16.66
KeePassDroid 2 4.00 23 11.26 415 18.01 6506 24.33
Mileage 4 2.75 25 6.76 207 10.92 1790 14.95
MyTracks 9 7.22 109 15.01 1313 22.61 15354 30.08
NPR 7 7.14 139 15.18 2192 22.29 30341 29.10
NotePad 4 5.25 16 10.75 64 16.25 256 21.75
OpenManager 4 2.75 12 5.08 36 7.42 108 9.75
OpenSudoku 4 4.25 17 8.94 75 13.53 333 18.13
SipDroid 3 4.33 7 8.57 18 12.56 47 16.47
SuperGenPass 2 4.50 2 10.50 2 16.50 2 22.50
TippyTipper 4 5.50 16 11.75 74 17.86 358 23.91
VLC 3 5.00 6 11.50 12 18.00 24 24.50
VuDroid 3 3.33 8 8.50 24 13.50 72 18.50
XBMC 11 5.73 361 13.02 10906 19.82 299564 26.34

Table 6.3: Measurements of sequences of lifecycle callbacks.

(ConnectBot, NotePad, XBMC), we additionally examined the “non-standard” transi-

tions δ1
“non-standard”−−−−−−−−→ δ2 for the two stacks δ1 and δ2 in the stack transition graph

to determine how many of them would not have a matching δ2
finish−−−−→ δ1 transition.

Absence of such
finish−−−−→ transitions reveals limitations in existing static analysis ap-

proaches and illustrates one possible client of our activity stack analysis. For all of

these three apps, we do observe such absence. For example, for XBMC, the largest one

among the three apps, 12.5% of all activity launch transitions are “non-standard”

ones that do not have a matching
finish−−−−→ transition.

6.5.2 Sequences of Lifecycle Callbacks

The measurements in Figure 6.3 characterize the sequences of lifecycle callbacks

that can be derived from STG paths. For a specified value of k, we consider STG
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paths starting with the implicit launch-main-activity STG edge and containing ex-

actly k edges. To avoid skewing the results, implicit STG edges due to rotate, home

and power operations are not considered in this experiment. Two measurements are

reported—the number of sequences (columns “#Seq”) and the average length of se-

quences (columns “Length”). As expected, these two measurements both increase as

k increases. Each sequence computed for a smaller k (e.g., when k = 2) is a prefix

of some sequences computed for a larger k (e.g., when k = 8). The increase in aver-

age length is roughly linearly proportional to the increase of k, while the increase in

number of sequences is much faster.

6.6 Summary

In this chapter, we introduce the first static analysis to model the Android activity

stack, the changes in this stack, and the interactions between activities. We extend

the formal semantics developed in Chapter 5 to include abstractions to represent the

state and changes of the activity stack. Based on the semantics, we encode relevant

Android constructs in an activity transition graph and perform traversal on this graph

to compute the set of all possible activity stack states. The output of the analysis is

encoded in a stack transition graph, whose nodes represent stacks and edges represent

abstract operations to trigger the transition between two stacks. As an extension

to the proposed technique, we develop a control-flow analysis of activity lifecycle

callbacks. This work is an important step toward fully modeling the control/data

flow of an Android application. It can be leveraged by other researchers to prune

infeasible control-flow paths in static analysis for Android, or to discover more paths

that would be missing without modeling of the activity stack.
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CHAPTER 7: Related Work

7.1 Software Bloat Analysis

A number of tools have been proposed to quantify various symptoms of bloat

(e.g., [34,39,53,89]), without providing insights into the reasons why this bloat occurs.

Mitchell et al. [76] consider the transformations of logical data in order to explain run-

time behavior and to assist a programmer in deciding whether execution inefficiencies

exist. The approach in this work is not automated. Their follow-up work [75] focuses

on deciding whether data structures have unnecessarily high memory consumption.

Work by Dufour et al. analyzes the use and shape of temporary data structures [35,

36]. Their approach is based on a blended analysis, where a run-time call graph is

collected and a static analysis is applied based on this graph. JOLT [97] is a VM-

based tool that uses a new metric to quantify object churn and identify regions that

make heavy use of temporary objects, in order to guide method inlining inside a

just-in-time compiler.

In general, existing bloat detection work can be classified into two major cate-

gories: manual tuning methods (i.e., mostly based on measurements of bloat) [35,36,

75, 76], and fully automated optimization techniques such as the entire field of JIT

technology [9] and the research from [97]. We provide analyses to support manual

tuning, guiding programmers to code where bloat is likely to exist, and then allowing

human experts to perform the code modification. By doing so, we hope to help the
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programmers quickly get through the hardest part of the tuning process—finding the

likely bloated regions—and yet use their (human) insights to perform application-

specific optimizations.

More recent work on bloat detection includes techniques that focus on different

bloat patterns (such as excessive copy activities [116] and inefficient use of data struc-

tures [115]) to help programmers identify performance bottlenecks. The previous work

closest to our reference propagation technique described in Chapter 2 is the profiling

of copy activities from [116]. While both techniques track the flow of data, the pro-

posed reference propagation analysis is more general and powerful in several aspects.

First, the analysis records much more detailed information on how objects propagate,

including information that connects the propagation with the corresponding source

code statements. This level of detail makes it easier to explain and fix a performance

problem. Second, the abstractions used to represent the propagation are more pow-

erful, since they are specific to a producer of references, while the profiling in [116]

merges the flow from multiple producers. Third, our work reports potential problems

together with indicators of the likely difficulty of explaining and eliminating them.

This approach is based on properties of the propagation that capture the complexity

of interprocedural control-flow and of interactions with heap data structures.

7.2 Memory Leak Detection

There exists a large body of work on memory leak detection, including both

static [19, 21, 49, 50, 59, 83, 104, 114] and dynamic approaches [14, 38, 48, 53, 57, 74, 90,

117, 118]. LeakChecker introduced in Chapter 3 is the first practical static memory

leak detector for managed languages.
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Static analyses for memory leak detection Static analysis techniques [19,

21,49,50,59,83,104,114] have been widely used to detect memory leaks for unmanaged

languages such as C and C++. The explicit memory management in such languages

allows the formulation of leak detection as a reachability problem—any control flow

path that creates an object but does not free it may reveal a leak and is thus reported

to the user for inspection. Work in [19] defines a reachability problem on the program’s

guarded value flow graph, and detects leaks by identifying value flows from the source

(malloc) to the sink (free). Saturn [114] reduces the problem of leak detection to a

boolean satisfiability problem, and uses a SAT-solver to identify potential bugs. Shape

analysis based on 3-valued logic [32] has been proposed to assert the absence of leaks

in list manipulation functions. Hackett and Rugina [45] identify leaks with a shape

analysis that tracks individual heap cells.

Orlovich and Rugina [83] use backward dataflow analysis to disprove the feasibility

of potential leak errors. The Clouseau [49] leak detector employs pointer ownership

to describe the responsibilities for freeing heap memory, and formulates leak analysis

as an ownership constraint system. Work in [50] proposes a type system to describe

object ownership for polymorphic containers, and uses type inference to detect con-

straint violations. These prior efforts target C and C++ program whereas we are

interested in garbage-collected languages such as Java and C#. A reachability for-

mulation cannot be adopted to find leaks for managed languages, because object

deallocation is done automatically by GC. In contrast, developer insight is exploited

by LeakChecker (Chapter 3) to identify leaking objects at a high, semantic level.

Work in [96] presents a static live region analysis for Java to detect array-related
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memory leaks. The problem of detecting liveness regions of arrays is formulated us-

ing a constraint graph that models linear inequalities over variables. The approach

from [30] uses separation logic and shape analysis to find unused objects. However,

these two analyses can be extremely expensive and they have not been applied on

large-scale applications.

Dynamic analyses for memory leak detection Heap analysis tools such

as [38, 53] take heap snapshots and visualize the object graph to help the user find

unnecessary references. However, they do not provide the ability to automatically

pinpoint the cause of a memory leak. Work done in the research community uses

either growing types [57, 74] (i.e., types with growing number of run-time instances)

or object staleness [14, 48, 118] (i.e., the elapsed time since the last use of an object)

to identify suspicious data structures that may be related to a memory leak. Re-

cent work from [117] leverages high-level program semantics to detect leaks related

to transactional code structures. All these existing dynamic analyses require appro-

priate executable programs and test inputs, and can detect problems only when leaks

are triggered in a particular test execution. It may be very difficult to meet these

requirements, especially during development and in-house testing. In addition, dy-

namic approaches cannot work for partial programs such as components, plugins, and

mobile apps. LeakChecker, the static approach proposed in Chapter 3 does not have

these limitations.

7.3 Testing and Analysis of Android Software

As a fast-growing leading platform for mobile computing, Android has attracted

significant attention in the program analysis/testing research community.
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Model-based GUI testing. Finite state machines and similar models for GUI

testing have been used by a number of researchers (e.g., [1, 2, 11, 44, 67, 69, 70, 105,

112, 113, 124]). Given a GUI model, test cases can be generated based on various

coverage criteria (e.g., [69]). In these approaches the focus is typically on functional

correctness and the coverage criteria reflect this. In contrast, we are interested in non-

functional properties, and the coverage categories we define explore specialized paths

in the model (with multiple repetitions of a neutral cycle) in order to target common

leak patterns. An alternative to model-based testing is random testing. For example,

Hu and Neamtiu [51] use the Monkey tool [108] to randomly insert GUI events into

a running Android application, and then analyze the execution log to detect faults.

Random testing is highly unlikely to trigger the repeated behavior needed to observe

sustained growth in resource usage, the goal of the work presented in Chapter 4.

Reverse engineering of GUI models has been studied by others (e.g., [44, 68, 70])

and has been applied to Android applications (e.g., [1,2,4,11,107,124,130]). Several

techniques have been proposed to improve the precision of models and the test cases

generated from them (e.g., [8,125,126]). Almost all of these approaches consider only

the GUI, and do not relate back to the program code. The GUI testing strategy

presented in Chapter 4 considers coverage of activities and activity lifecycle callback

methods. This exploration of Android-specific feature leads to efficient test generation

and shorter test execution time.

Testing and static checking for Android. Prior work has considered the

use of concolic execution to generate sequences of events for testing of Android appli-

cations [3, 55]. Zhang and Elbaum [128] focus on testing of exception-handling code

when applications are accessing unreliable resources. As an alternative to testing,

177



static checking can identify various defects including invalid thread accesses [129],

energy-related defects [86], and security vulnerabilities [82]. The basis for these ap-

proaches is static analysis of Android applications, either to assist code instrumen-

tation or to identify statically certain targeted behavioral patterns. Our work on

foundational Android static analysis techniques (Chapters 5 and 6) can be leveraged

to improve these existing approaches.

Static analysis for Android. Static analysis to understand GUI-driven behav-

ior is essential for modeling the control/data flow of Android applications. Early work

by Chaudhuri [18] and follow-up work on the SCanDroid security analysis tool [42]

formalizes aspects of the semantics and performs control-flow analysis and security

permissions analysis. This effort focuses on activities and other Android compo-

nents (e.g., background services). These components communicate through intents—

objects that describe the operation to be performed—and the analysis models these

intents and the inter-component control flow based on them. The implementation is

evaluated on a number of synthetic examples. This work does not model the GUI

objects, events, and handlers that trigger the inter-component transitions, and uses

conservative assumptions about the GUI-related control/data flow. Later work on

related security problems [20,43,82] has similar limitations.

The A3E tool for automated run-time exploration of Android applications [11]

takes advantage of SCanDroid’s static analysis to achieve high coverage. Such run-

time coverage is essential for a variety of dynamic analyses for profiling, energy anal-

ysis, security analysis, and systematic testing (e.g., [2, 40, 47, 62, 85, 111, 127]). The

analysis from SCanDroid is used to construct a static activity transition graph, with

nodes representing activities and edges showing the possible transitions between them;
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this graph is then used to drive the run-time exploration. It is unclear how this static

analysis approach handles the general case when arbitrary GUI objects are associated

with an activity, their handlers (located outside of the activity class) are registered via

set-listener calls, and those handlers trigger transitions to new activities. Similar con-

siderations apply to a hybrid static/dynamic analysis of UI-based trigger condition in

Android applications [130], where security-sensitive behaviors are triggered dynami-

cally based on a static model of activity transitions. The model construction in this

work is incomplete and can benefit from the general solution provided in Chapter 5.

Furthermore, these two approaches do not model the behavior of the activity stack

and thus cannot fully express the semantics of an activity termination operation. The

analysis introduced in Chapter 6 can be used to address this limitation.

A similar model, in which nodes represent UI screens and edges show transitions

based on GUI events, is used as input to an automated test generation approach

based on concolic execution [55]. Essential information encoded in the model is the

set of tuples (activity a, GUI object v, event e, handler method h), where v is visible

when a is active, and event e on v is handled by h. In this prior work the models

are constructed manually; the output of the static analysis from Chapter 5 can be

directly used to automate the generation of these tuples. As indicated by the case

studies presented in Section 5.4.3, this information about GUI structure and behavior

can be inferred very precisely by our analysis. The same benefits can apply to other

model-based testing techniques for Android [105,122,123].

Yang et al. [124] present a reverse-engineering tool that combines static and dy-

namic analysis to construct a model of the application’s GUI for testing purposes.

The static analysis component identifies the objects that can serve as listeners, and
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determines the view ids of the GUI objects associated with these listeners. The anal-

ysis does not model the actual GUI objects (inflated or explicitly created), does not

capture the general flow of these objects through the constructs described in Sec-

tion 5.2, and does not account for the flow of view ids. Using our work, the generality

of this tool could be increased. Similar observations apply to prior work on a static

error checker for GUIs [129]. This tool is based on analysis of call paths that lead

to operations on GUI objects. The analysis takes into account the objects created

through inflation, but does not model precisely the flow of views due to the operations

outlined in Section 5.2. Similar features and limitations can be seen in another static

checker for Android [87]. Employing the analysis presented in Chapter 5 could lead

to improved generality and precision for these checkers.

FlowDroid [10] is a precise flow- and context-sensitive taint analysis which per-

forms interprocedural control-flow and data-flow analysis for Android. As part of this

approach, the effects of callbacks are modeled by creating a wrapper main method.

Our handling of relevant callbacks is conceptually similar, but without explicitly cre-

ating a wrapper. In FlowDroid, placeholder GUI objects that may flow into these

callbacks are created in the wrapper method, while our approach propagates to the

callbacks the actual GUI objects (Algorithm 5.6). In FlowDroid, XML layout files are

examined to identify potential taint sources and connect them with the statements

that access them. It does not appear that the tool models the constructs discussed in

Section 5.2 and the corresponding GUI-related flow. CHEX [61] employs a different

approach to model Android control flow. For an Android app, each callback method

and all its transitive callees are defined as a code split, and all permutations of these

code splits are used to derive the set of possible control-flow paths. AsDroid [52]
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analyzes event handlers of GUI objects to detect stealthy behaviors, but does not

systematically model the GUI objects and the GUI hierarchy. These existing tech-

niques could be complemented by the approach from Chapter 5, which would add

general modeling and tracking of GUI objects and their event handlers.

Understanding GUI objects and their event handlers is essential for various other

analyses of Android applications. For example, an existing static detector of energy-

related software defects [86] requires control-flow analysis of the possible execution

orders of event handlers. In this work, programmer input is needed to specify these

orders. Instead, it may be possible to develop an automated approach based on anal-

ysis of activities, GUI objects associated with them, and handlers for these objects;

the analyses from Chapters 5 and 6 provide the starting point for such an approach.
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CHAPTER 8: Conclusions

The computing industry has experienced fast and sustained growth in the com-

plexity of software functionality, structure, and behavior. Increased complexity has

led to new challenges in program analyses to understand software behavior, and in

particular to uncover performance inefficiencies. The same challenges are present in

both traditional and mobile object-oriented software. Static and dynamic analyses

need to keep up with this trend, and this often requires novel technical approaches.

This work is based on three key observations. First, following strictly the low-level

definitions of performance inefficiencies makes it very difficult to develop practical and

effective analyses. For example, static leak detection based on object liveness does

not scale to large programs. As another example, complex programs may not have

hot spots to analyze/optimize deeply, making traditional profiling techniques inef-

fective. Understanding high-level behavioral patterns of performance inefficiencies

and bringing these insights into analysis design is a promising approach to overcome

these limitations. Second, modeling only low-level semantics is no longer sufficient to

build a precise analysis. For example, traditional reference and control-flow analysis

techniques are not effective for Android applications, whose behavior is heavily de-

pendent on the platform code. The Android platform has a mixture of features such

as customized inter-component communication, heavy use of native code, complex

GUI hierarchies, and event-driven control flow, none of which could be understood

and precisely modeled by an analysis based on low-level semantics. In particular,
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information about GUI structure and behavior is lost without modeling based on

the high-level semantics. Third, pursuing across-the-board high analysis precision is

usually infeasible. Instead, selectively increasing analysis precision on certain pro-

gram entities and carefully spending the analysis budget have been shown practical

and effective in our work. In an analysis of Android GUI objects, modeling precisely

only the GUI-related APIs and objects helps make a precise analysis practical. In an

analysis of memory leaks, the leak candidate objects are modeled context-sensitively

while context-insensitive modeling of other (irrelevant) objects helps reduce analysis

cost, without sacrificing the overall precision and effectiveness. In short, a selective

subset of high-level behavioral patterns and program semantics must be leveraged in

order to perform practical program analyses for modern software.

Based on these key observations, we develop several dynamic and static program

analysis techniques to understand, detect, and remove performance inefficiencies for

both traditional and mobile object-oriented programs. Programs studied by these

techniques are all written in Java, but we believe the proposed techniques are general

enough to be applied to systems written in other object-oriented languages as well.

Bloat—excessive memory usage and work to accomplish simple tasks—is an im-

portant source of inefficiencies. We propose a novel reference propagation profiling

tool to uncover performance problems in Java applications. The tool reports to de-

velopers a ranked list of suspicious allocation sites, annotated with information about

the likely ease of performing transformations for them. Interesting performance in-

efficiency patterns are discovered by this analysis, and the running time reduction

achieved by optimizing suspicious allocation sites can be significant.
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Memory leaks commonly exist in both traditional and mobile object-oriented pro-

grams. Due to their presence, programs can slow down or even crash. We propose

LeakChecker, the first practical static memory leak detector for Java. Leak detection

performed by LeakChecker is based on an important observation that an event loop is

often the place where severe leaks occur, and these leaks are often caused by objects

outside the loop keeping unnecessary references to objects created inside the loop.

The experimental results show that LeakChecker successfully finds leaks in all of the

eight evaluated large programs and the false positive rate is reasonably low.

Resource leaks (e.g., memory leaks) are an important hurdle for quality software.

We develop LeakDroid, a systematic and effective technique for testing of resource

leaks in Android applications. In this work, test cases are generated to cover neutral

cycles—sequences of GUI events that should not lead to increases in resource usage.

Evaluation of this approach indicates that complicated and diverse resource leaks can

be exposed by the generated test cases.

The availability of a GUI model is important for test generation to uncover re-

source leaks as well as general correctness problems in Android applications. Moti-

vated by this need, we propose the first static analysis to model GUI-related Android

objects, their propagation through the application, and their structural and behav-

ioral properties. The analysis enables static modeling of control/data flow that is the

basis for many compile-time analyses, error checking, test generation, and automated

debugging. In another contribution toward static analysis of control/data flow, we

develop the first static analysis to model the Android activity stack and the changes
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in this stack during program execution. This allows precise modeling of the interac-

tions between activities, and serves as a starting point for other static and dynamic

analyses for Android.

Several case studies have been presented for all of these analysis techniques. These

studies demonstrate the effectiveness of the proposed insights, algorithms, and tools.

Our experience with these techniques and tools provides promising evidence of prac-

tical approaches that can be used in real-world software development to understand

and improve software behavior and performance.

185



BIBLIOGRAPHY

[1] D. Amalfitano, A. Fasolino, and P. Tramontana. A GUI crawling-based tech-
nique for Android mobile application testing. In International Workshop on
Testing Techniques and Experimentation Benchmarks for Event-Driven Soft-
ware (TESTBED), pages 252–261, 2011.

[2] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M.
Memon. Using GUI ripping for automated testing of Android applications.
In International Conference on Automated Software Engineering (ASE), pages
258–261, 2012.

[3] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic test-
ing of smartphone apps. In ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE), pages 59:1–59:11, 2012.

[4] Android GUITAR. sourceforge.net/projects/guitar.

[5] Apache Derby. db.apache.org/derby.

[6] Apache log4j. logging.apache.org/log4j/1.2.

[7] APV PDF viewer. code.google.com/p/apv.

[8] S. Arlt, A. Podelski, C. Bertolini, M. Schäf, I. Banerjee, and A. M. Memon.
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