
Testing for Poor Responsiveness in Android
Applications

Shengqian Yang Dacong Yan Atanas Rountev
Department of Computer Science and Engineering

Ohio State University
Email: {yangs,yan,rountev}@cse.ohio-state.edu

Abstract—An important category of defects in Android appli-
cations are related to poor responsiveness. When the user interface
thread performs expensive operations, the application is sluggish
and may fail with an “Application Not Responding” error.
Poor responsiveness has serious negative consequences for user
perception and marketplace success. We propose a systematic
technique to uncover and quantify common causes of poor
responsiveness in Android software. When test cases are executed
against the application GUI, artificial long delays are inserted
at typical problematic operations (e.g., at calls that access the
network). This test amplification approach may exhibit increased
response times for GUI events, which demonstrates the effects of
expensive operations on poor responsiveness observed by the user.
The proposed approach successfully uncovered 61 responsiveness
problems in eight open-source Android applications, due to
inappropriate usage of resources such as network, flash storage,
on-device database, and bitmaps.

I. INTRODUCTION

At present, Android is the leading platform in the smart-
phone market worldwide [11]. Android devices such as tablets
and e-readers (e.g., Google Nexus, Amazon Kindle Fire HD)
are also rapidly increasing in popularity. Growing numbers
of users are employing Android devices in their everyday
lives, for diverse tasks such as access to and sharing of
information, online purchases and other monetary transactions,
casual gaming, and playback of audio and video. The pervasive
use of Android applications, together with their increasing
popularity, require comprehensive and sustained efforts to
improve software quality. Currently there are few software
testing techniques designed for this domain. There is clear
need for new research investigations and effective tool support
for testing of Android software.

A. Poor Responsiveness due to Jank in Android Applications

A category of defects with highly-undesirable consequences
are related to poor responsiveness. If an application takes more
than 200 ms to respond to a user event, it is perceived to be
sluggish and unresponsive [10]. The worst-case scenario is
an “Application Not Responding” (ANR) error, displayed by
the Android runtime when the application is deemed to have
stopped responding (e.g., no response to a key press within 5
seconds) [20]. Poor responsiveness has direct effect on the
user’s perception of the application—frequent sluggishness
and ANR messages would motivate the user to uninstall the
application, and possibly submit a low rating and negative
comments in the app market [12]. Thus, avoiding and fixing

responsiveness defects is a very high priority for developers
[10], [20].

The reason for poor responsiveness is well known: the main
thread of an Android application is the one that processes UI
events, and this thread should not perform heavy computations
or long-wait operations in response to user events. Typical
examples of such heavyweight processing are network oper-
ations, database operations, file I/O, and bitmap processing;
in the Google developer community, they are colloquially
referred to as “jank” [10]. Testing for the presence and effects
of jank is challenging. For example, in a development envi-
ronment where the application runs in an emulator, network
access typically is very fast and network-related jank may
remain unnoticed, while on the actual device this access could
be through a much slower 3G wireless network. Although
there are informal guidelines to avoid poor responsiveness, this
important problem has not been investigated by the software
engineering research community, and currently there do not
exist any testing strategies for exposing jank in Android
applications.

B. Our Proposal

We propose a systematic technique to uncover and quantify
suspicious behavior that may lead to poor responsiveness in
Android applications. Based on a graph model of the GUI
of the application, test cases are executed to cover each GUI
state and state transition. These tests are then re-executed in
a modified environment in which artificial long delays are
inserted at typical sources of jank (e.g., around code that
accesses the network). This approach, referred to as test am-
plification, may exhibit increased response times when certain
GUI transitions are traversed. Such increases are used to char-
acterize the effects of jank: the relationship between different
inserted delays and the resulting GUI response times quantifies
the externally-observable effects of “janky” operations. This
characterization, together with the test case and the amplified
application code, are reported to the tester as evidence of poor
responsiveness. This approach demonstrates a direct cause-
effect relationship between expensive operations and poor
responsiveness observed by the user. In our experiments this
technique successfully uncovered 61 problems in eight open-
source Android applications, due to inappropriate usage of
resources such as network, flash storage, on-device database,
and bitmaps.

Fig. 1. ANR dialog [20].

Contributions. The contributions of this work are:
• Test amplification criteria: We define several test am-

plification criteria for different categories of problematic
operations. This approach is based on common causes of
jank in Android applications.

• Test amplification and execution: We describe how test
cases are amplified and executed in order to uncover
janky operations and to quantify their effect on respon-
siveness.

• Evaluation: We evaluate the proposed approach on eight
open-source Android applications. The evaluation shows
that a wide variety of expensive operations are commonly
found in the UI thread, and that our amplification ap-
proach effectively exposes these janky operations.

• Case studies: We describe several case studies of re-
sponsiveness defects. These studies, together with the
observations from the rest of our experiments, are used
to suggest directions for future work on the important
problem of poor responsiveness in Android software.

These contributions add to the growing body of work in the
emerging area of analysis and testing of Android software.
The experimental results and case studies increase our under-
standing of common defects in mobile applications, and point
to interesting problems for future research.

II. BACKGROUND

A. Poor Responsiveness in Android Applications

An “Application Not Responding” (ANR) error, illustrated
in Figure 1, is the most visible manifestation of poor respon-
siveness. If the application does not respond to user input
(e.g., screen touch) within 5 seconds, the Android runtime
presents an ANR dialog to the user [20]. Such errors create
a highly-negative user experience, and avoiding them is very
important [20]. Even less extreme poor responsiveness can
be very damaging: a delay of more than 200 ms creates the
perception of stuttering, being sluggish, or freezing [10], which
may cause the user to uninstall the application and to submit
a negative comment in the app marketplace.

The cause of this highly-undesirable behavior is colloquially
referred to as “jank” by Google engineers [10]. Jank is
excessive work performed in the event-handling thread, which
in Android is the main thread of the application. A typical
example is a network operation in an event handler. In a
wireless 3G environment, a simple “ping” could be as slow
as 800 ms, and an HTTP fetch of a small amount of data

(a) (b)
Fig. 2. APV application: (a) ChooseFileActivity lists files and folders.
(b) OpenFileActivity displays the selected PDF file.

can take seconds [10]. Another example are I/O operations
on the flash file system. The performance characteristics of
flash storage differ significantly from those of a traditional disk
file system. For example, the cost of a simple disk operation
can be substantial, and this cost increases significantly when
the storage is nearly-full. Similar considerations apply to SQL
operations on the built-in SQLite database. As yet another
example, jank could come from computationally-expensive
operations related to bitmaps [20].

Testing for jank presents a number of challenges. First,
the execution environment during software development may
differ significantly from the real-world deployment environ-
ments. In development, the application is typically run in the
standard Android emulator on a desktop machine, and network
operations and file I/O operations may be much faster than on
actual devices in the hands of users, over a poor network and
with nearly-full flash storage. As a result, jank may remain
unnoticed until the application is distributed to users. Second,
there is no systematic testing strategy that targets the typical
sources of jank, and there are no tools to perform such testing
automatically. The significant negative effects of poor respon-
siveness, and the lack of any comprehensive testing techniques
and tools, motivate our work on techniques and tools to
uncover and quantify the causes of poor responsiveness.

B. GUI-Based Testing

The approach we propose is based on test cases that are
executed (and re-executed) against the GUI of the application
under test. An Android activity is a GUI window. A GUI
event generated by the user (e.g., tapping on a button) can
trigger a transition to another activity. For illustration, Figure 2
shows screenshots of two activities from the APV [4] PDF
viewer application. ChooseFileActivity is presented to the
user when the application starts. Given the list of files and
folders, the user can select a PDF file which is then displayed
by OpenFileActivity. Each activity represents a different
GUI state.

We consider testing based on a GUI model. Such a model
is available from design documents or obtained through GUI
reverse engineering [23], [14], [1], [3], [35]. A partial GUI
model for APV is shown in Figure 3. (The figure shows only

n1: ChooseFileActivity Select Folder

n2: OpenFileActivity

Select File

n3: AboutPDFViewActivity

MENU:About

BACK

 Zoom In Zoom Out Fit Width

MENU:About

BACK

BACK

Fig. 3. A subset of the GUI model for APV.

a subset of GUI states and transitions.) The model is a graph
where nodes are GUI states and edges are transitions triggered
by GUI events. In addition to traditional events, we consider
Android-specific events. For example, a user can press the
hardware MENU button and select a menu item from a list
specific to the current state. In Figure 3 edges labeled with
“MENU:” represent such events. As another example, the
hardware BACK button can be used to destroy the current
activity and to transition to another one.

Various techniques (e.g., [23], [14], [1], [3], [35]) can
automatically construct GUI models similar to the one from
Figure 3. This process is also referred to as “GUI ripping”.
An example of a GUI ripping tool for Android is AndroidRip-
per [1]. In this tool, at each GUI state, the widgets and
the events that can be triggered on them are considered at
run time. To construct the GUI models used for our test
generation, we currently use AndroidRipper; in cases where
the tool has deficiencies, manual steps are applied. Clearly,
a comprehensive model would lead to more thorough testing.
Some very recent work [35] proposes GUI reverse engineering
for Android based on a combination of static code analysis and
run-time analysis. Such an approach is more effective than
purely-dynamic GUI ripping, and it presents a good starting
point for our testing technique.

III. TEST AMPLIFICATION APPROACH

The starting point of our approach is a set of test cases T
based on the GUI model of the application. The choice of this
set is orthogonal to the amplification approach we propose.
In our current implementation we use a set T that covers
each state and each transition in the GUI model at least once.
Each test case t ∈ T is implemented in the Robotium testing
framework [30], where calls to the framework API trigger the
necessary GUI events. Note that alternative definitions for T
are also possible (e.g., to achieve coverage of certain subpaths
in the GUI model), and they present an interesting target for
future work.

One simple approach to detect potentially-problematic op-
erations is to execute each t and to observe (and report) any
suspicious calls occurring during test execution. In fact, the
Android platform already provides a so-called “strict mode”
[31], which reports if any calls to a hard-coded set of expensive
APIs (e.g., java.net.*) occur at run time. Alternatively,

code instrumentation at such suspicious calls could be inserted
by the tester (e.g., using an instrumentation tool) to report the
run-time occurrences of these calls.

We propose a more comprehensive approach which demon-
strates and quantifies the direct cause-effect relationship be-
tween expensive operations and poor responsiveness observed
by the user. In this approach, each test case t ∈ T is first
executed against the unmodified application, and the response
time for each GUI event is recorded. Next, the execution of
each t is amplified according to one of several amplification
criteria. The use of the term “amplification” follows earlier
work [39], where test cases are amplified by throwing addi-
tional exceptions at API calls, to test robustness in the presence
of exceptional behavior. Our approach amplifies relevant API
calls with artificial delays, re-executes t, and measures the new
GUI event response times. The changes in response times, as
a function of the duration of the delays at API calls, provides
a characterization of the effects of these calls on the user. For
example, if we want to focus on a particular API call site c, we
would instrument c (and only c) with a configurable delay d,
then execute each t ∈ T for several different values of d, and
report the changes in GUI event response times. The effect of
c on the user is fully characterized by the relationship between
the values of d, the values of response times, and the specific
GUI events for which responsiveness decreases.

A. Amplification Criteria

Based on Android developer guidelines [20], [10], [31], as
well as our own experience, we focus on four categories of API
calls that represent the common sources of jank. These APIs
are related to sending and receiving data over the network,
accessing the flash storage, accessing the on-device database,
and processing of bitmaps.

1) Network Access: A well-known development guideline
states that Android applications should not perform network
operations in the UI thread [20]. Even a small HTTP fetch
over a 3G network can take several seconds [10], far ex-
ceeding the limit of 200 ms needed to avoid the perception
of sluggishness. Our experience shows that a variety of API
calls can be used to access the network (e.g., using class
org.apache.http.client.HttpClient, but we have observed
a number of other similar APIs). Currently we use automated
heuristics together with manual steps to identify such calls;
in total, 15 network-related API methods are considered.
An interesting direction for future work is to perform such
identification fully automatically, with the help of either static
or dynamic program analysis.

2) Flash Storage Access: The file system in Android de-
vices is implemented on top of flash storage.1 The performance
of the file system presents some challenges: for example,
the degree of concurrency for multiple disk operations (from
different simultaneously-running applications) may be low,
and the cost of the disk garbage collection may be high. The

1Android defines two categories of non-volatile storage: internal and
external, possibly accessed through different file systems such as YAFFS and
exFAT. Both categories are implemented with flash memory.

general guideline is that even simple disk operations could
exhibit significant and unexpected latencies, and should be
avoided in the UI thread [10]. Our approach amplifies disk-
access calls to 25 methods in relevant stream classes.

3) Database Access: Android applications often access
the on-device SQLite database by calling methods in class
android.database.sqlite.SQLiteDatabase. The database
accesses can generate substantial amount of expensive write
operations to the flash storage. Furthermore, depending on the
query, the effectiveness of the SQLite query optimizer may
differ significantly [10]. We amplify calls to 11 methods in
SQLiteDatabase, including delete, execSQL, insert, query,
rawQuery, replace, and update.

4) Bitmap Processing: Processing of large bitmaps could
be computationally expensive and should not be done in the
UI thread [20]. A call to a method BitmapFactory.decode*

will load and decode an image from the file system, potentially
producing a smaller subsampled version in memory [21]. We
amplify calls to 6 such methods, to simulate a situation when
a large HD image from disk is loaded and decoded, which
could “freeze” the application’s user interface and potentially
trigger an ANR error.

B. Implementation and Test Execution

Our implementation of the amplification uses AspectJ to
instrument the application. This requires access to the source
code. The approach can also be applied to programs for which
source code is not available, either by (1) instrumenting the
Android-specific Dalvik VM bytecode directly [29], [17], or
(2) converting Dalvik bytecode back to Java bytecode [27] and
using existing bytecode rewriting tools.

Instrumentation is added immediately before each of the
API calls described earlier. Each instrumented call site c is
given a unique ID. Immediately before test cases are executed,
a particular call site ID is activated (the rest of the IDs remain
inactive). During test execution, the instrumentation at the
activated call site c introduces a configurable delay to the
execution of the current thread. The duration of the delay
can be varied from run to run, and the GUI event response
times can be used to quantify the effect on responsiveness. In
cases where the goal is simply to trigger an ANR error for
c, we introduce a delay of 10 seconds at c, run all test cases,
and determine whether at least one fails with an ANR error.
Such failures can be detected automatically by considering
the contents of an ANR log file maintained by the Android
platform. In our experience, the ANR errors triggered in this
manner occur deterministically.

IV. EVALUATION

We performed an initial study of the proposed testing
approach on eight open-source Android applications. For each
application we constructed a set of test cases that cover all GUI
states and transitions. All experiments were performed on the
standard Android emulator from the Android SDK.

The characteristics of the experimental subjects are shown
in the first five columns of Table I. The applications come from

several domains: email client (K9), SSH client (ConnectBot),
PDF and e-book readers (APV, VuDroid, FBReader), task
management (astrid), password management (KeePassDroid),
and multimedia player (VLC). The table shows the number of
activities (each one corresponding to different state in the GUI
model) and the number of Java classes in each application.
Column “Test Cases” shows the number test cases that were
used as input to the amplification process.

Each subsequent column in Table I is divided into two sub-
columns. The first subcolumn shows the number of all API call
sites that were subjected to a particular amplification criterion,
as described in Section III-A. The second subcolumn shows
how many of these call sites, when amplified individually with
a large delay, triggered an ANR error failure for at least one
test case.

The measurements in Table I demonstrate that each of the
eight analyzed applications violates the best-practice guide-
lines defined by Google engineers [20], [10] and contains
janky operations in the UI thread. The total number of such
operations is 61. It is interesting to note the developers of these
applications appear to be quite careful in their handling of
network operations: since such operations are widely-known
to be harmful to responsiveness, developers do not include
them in the UI thread (only one ANR-triggering operation was
related to the network). The other sources of jank are more
prevalent, with database accesses being the most common
ones. These observations indicate that both jank prevention
(e.g., via code analysis tools during software development) and
jank detection (e.g., as part of software testing) are important
consideration for Android, and that the full diversity of root
causes should be taken into account by future analysis and
testing techniques.

V. CASE STUDIES

This section presents four case studies based on the failing
test cases we observed. An interesting question raised by
these studies is how to proactively prevent such responsiveness
problems, through design principles and patterns, and with the
help of automated code transformation techniques.

A. Connectbot

Connectbot is an SSH client for Android. For this ap-
plication the amplified test cases highlighted an API call
which is used to send keyboard input to a remote machine.
Whenever the user presses a button on the keyboard, the button
information is encrypted and sent over the network. Depending
on network congestion and the status of the remote machine,
the send operation (a write on a socket) may block the UI
thread for several seconds. As a result, the application would
become unresponsive and an ANR error would occur. It may
be desirable to redesign the application to perform the network
send in a separate thread, without “freezing” the UI thread.

B. K-9 Mail Client

K-9 is a popular open-source email client for Android.
For this application we found a problem related to flash

TABLE I
EXPERIMENTAL RESULTS.

Application Version Activities Classes Test Cases Network Flash Database Bitmap
All Fail All Fail All Fail All Fail

APV r131 4 56 13 0 0 5 1 4 1 0 0
astrid cb66457 11 481 18 2 0 11 0 62 3 0 0

ConnectBot e63ffdd 9 301 14 6 1 5 1 23 14 0 0
FBReader a53ed81 22 757 17 2 0 22 4 43 8 2 1

KeePassDroid 085f2d8 7 126 21 0 0 7 0 14 6 0 0
K9 v0.114 15 418 14 20 0 25 1 41 9 3 0

VLC dd3d61f 8 176 18 1 0 8 1 22 3 8 1
VuDroid r51 3 67 11 0 0 2 2 0 0 4 4

storage accesses. The problem occurs when an user attempts
to download an email attachments to the local file system.
When the user clicks on the download button, the attachment
file(s) are written to flash storage by the UI thread. Android
provides alternative mechanisms to perform such a potentially-
expensive task, including class android.os.AsyncTask which
can be used to perform background operations that publish
results on the UI thread.

C. VLC Media Player

VLC is a cross-platform multimedia player designed to
decode and play video/audio files from local storage and from
a network stream. In this application, we found a problem
related to decoding an image from external storage into a
bitmap object. Before VLC plays any audio file, it uses the
UI thread to load the cover page of the album. This image,
in most cases, is stored in flash storage. The decoding of a
large bitmap may result in poor responsiveness. Furthermore,
the same image could be decoded multiple times if the user
switches back and forth between different audio files.

D. Astrid

Astrid is an assistant-like application which helps users
manage their schedules by adding, deleting, searching, and
modifying tasks. In this application we found several oc-
currences where the UI thread performs SQLite database
operations when the user manipulates her tasks. As described
in Section III-A, the performance of database operations
depends on a variety of factors, and can cause poor respon-
siveness. To avoid this problem, a number of other Android
mechanisms could be used, including android.os.Handler,
android.os.AsyncTask, and android.app.IntentService.

VI. RELATED WORK

Model-based GUI testing. Model-based GUI testing (e.g.,
[33], [24], [25], [22], [34], [32], [1], [14]) builds a finite state
machine model for the application GUI and generates test
cases based on this model with respect to various coverage cri-
teria (e.g., [24]). The focus of all these existing approaches is
on functional correctness. We are interested in non-functional
properties related to application responsiveness. The proposed
amplification technique and criteria consider important re-
sources in the Android platform, and detect ANR problems in

the presence of variations in response times for GUI events that
access these resources. As an alternative, random testing can
also be applied in testing of GUI applications. For example,
work in [16] uses the Monkey tool [26] to randomly insert
GUI events into a running Android application, and then
analyzes the execution log to detect faults. Random testing is
highly unlikely to uncover responsiveness defects in the target
application.

To build a GUI model, dynamic reverse engineering is typi-
cally employed. GUI ripping [23], [25] automatically traverses
at run time the application GUI to extract a corresponding
finite state machine model. AndroidRipper [1] applies this
approach to Android applications. Several techniques have
been proposed to improve the precision of models and the
test cases generated from them (e.g., [37], [38], [36], [13],
[5], [14]). Recent work [35] proposes a static analysis which
can be combined with dynamic reverse engineering to create
better GUI models for Android applications and to improve
model-based testing.
Measuring responsiveness. Due to its negative effects on user
satisfaction, poor responsiveness in desktop GUI applications
has been the focus of several existing techniques (e.g., [9],
[19], [18]). In all these approaches, measurement techniques
are proposed to characterize and understand the latency of
event handling code. LagHunter [18] uses several heuristics
to select a set of methods to be tracked, and measures only
the running times of the selected methods in order to identify
lags in the handling of user events. This techniques is applied
to Java applications that use the Swing or SWT GUI toolkits.
In contrast, our approach measures GUI event response times
in Android software, both for the original program as well as
for an amplified program. The differences in response times
are used to characterize the effect of a suspicious API call site
on the user-observed application responsiveness. Furthermore,
our approach systematically explores the space of GUI events
and code operations that may cause poor responsiveness, while
LagHunter profiles a given run-time execution and can only
report suspicious behavior that was observed for this particular
execution.
Testing and analysis for Android. Anand et al. [2] use
symbolic execution for generation of Android event sequences
to be used in testing. Zhang and Elbaum [39] apply amplifi-
cation techniques for testing of exception-handling code when

accessing unreliable resources. There is emerging body of
work on analysis of Android applications—for example, for
security (e.g., [6], [7], [17]), privacy (e.g., [8]), and energy
(e.g., [28], [15]).

VII. CONCLUSIONS AND FUTURE WORK

Poor responsiveness of Android software can be very harm-
ful to user perception and marketplace success. We propose a
test amplification approach that exposes and quantifies the root
causes of responsiveness defects. Our promising initial study
suggests that such defects occur regularly in Android appli-
cations, and that the proposed technique is highly effective in
discovering them.

Mobile applications are increasingly important both for
software users and for software researchers. The quality of
such applications can and should be improved with the help
of automated testing and analysis. Our experience points to
a number of interesting research problems in this domain,
including (1) automated discovery (via static and/or dynamic
analysis) of code that manipulates expensive resources, (2)
better reverse engineering of GUI models, (3) model-based
generation of more comprehensive tests to be used as input
to amplification, (4) static analyses to detect responsiveness
problems before testing, and (5) design principles and patterns
to proactively prevent responsiveness defects.

ACKNOWLEDGMENTS

We thank the MOBS reviewers for their valuable comments
and feedback. This material is based upon work supported
by the U.S. National Science Foundation under grant CCF-
1017204 and by a Google Faculty Research Award.

REFERENCES

[1] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon. Using GUI ripping for automated testing of Android
applications. In ASE, pages 258–261, 2012.

[2] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated concolic
testing of smartphone apps. In FSE, pages 1–11, 2012.

[3] Android GUITAR. sourceforge.net/apps/mediawiki/
guitar/index.php?title=Android_Guitar.

[4] APV PDF viewer. code.google.com/p/apv.
[5] S. Arlt, A. Podelski, C. Bertolini, M. Schäf, I. Banerjee, and A. M.

Memon. Lightweight static analysis for GUI testing. In ISSRE, 2012.
[6] A. Chaudhuri. Language-based security on Android. In PLAS, pages

1–7, 2009.
[7] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-

application communication in Android. In MobiSys, pages 239–252,
2011.

[8] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones. In OSDI, pages 1–6, 2010.

[9] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer. Using latency to evaluate
interactive system performance. In OSDI, pages 185–199, 1996.

[10] B. Fitzpatrick. Writing zippy Android apps. In Google I/O Developers
Conference, 2010.

[11] Gartner, Inc. Press release, 2012. www.gartner.com/newsroom/
id/2237315.

[12] Google Play app store. play.google.com/store/apps.
[13] R. Gove and J. Faytong. Identifying infeasible GUI test cases using

support vector machines and induced grammars. In TESTBED, pages
202–211, 2011.

[14] F. Gross, G. Fraser, and A. Zeller. Search-based system testing: High
coverage, no false alarms. In ISSTA, pages 67–77, 2012.

[15] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating mobile
application energy consumption using program analysis. In ICSE, 2013.

[16] C. Hu and I. Neamtiu. Automating GUI testing for Android applications.
In AST, pages 77–83, 2011.

[17] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein. Dr. Android and Mr. Hide: Fine-grained permissions
in Android applications. In SPSM, 2012.

[18] M. Jovic, A. Adamoli, and M. Hauswirth. Catch me if you can:
Performance bug detection in the wild. In OOPSLA, pages 155–170,
2011.

[19] M. Jovic and M. Hauswirth. Listener latency profiling: Measuring the
perceptible performance of interactive Java applications. Science of
Computer Programming, 76(11):1054–1072, 2011.

[20] Keeping your app responsive. developer.android.com/
training/articles/perf-anr.html.

[21] Loading large bitmaps efficiently. developer.android.com/
training/displaying-bitmaps/load-bitmap.html.

[22] A. M. Memon. An event-flow model of GUI-based applications for
testing. Software Testing, Verification and Reliability, 17(3):137–157,
2007.

[23] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI ripping: Reverse
engineering of graphical user interfaces for testing. In WCRE, pages
260–269, 2003.

[24] A. M. Memon, M. L. Soffa, and M. E. Pollack. Coverage criteria for
GUI testing. In FSE, pages 256–267, 2001.

[25] A. M. Memon and Q. Xie. Studying the fault-detection effectiveness
of GUI test cases for rapidly evolving software. TSE, 31(10):884–896,
2005.

[26] Monkey: UI/Application exerciser for Android. developer.
android.com/tools/help/monkey.html.

[27] D. Octeau, S. Jha, and P. McDaniel. Retargeting Android applications
to Java bytecode. In FSE, page 6, 2012.

[28] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is keeping
my phone awake?: Characterizing and detecting no-sleep energy bugs
in smartphone apps. In MobiSys, pages 267–280, 2012.

[29] Redexer: A Dalvik bytecode instrumentation framework. www.cs.
umd.edu/projects/PL/redexer.

[30] Robotium testing framework for Android. code.google.com/p/
robotium.

[31] Strict mode in Android. developer.android.com/reference/
android/os/StrictMode.html.

[32] T. Takala, M. Katara, and J. Harty. Experiences of system-level model-
based GUI testing of an Android application. In ICST, pages 377–386,
2011.

[33] L. White and H. Almezen. Generating test cases for GUI responsibilities
using complete interaction sequences. In ISSRE, pages 110–121, 2000.

[34] Q. Xie and A. M. Memon. Using a pilot study to derive a GUI model
for automated testing. TOSEM, 18(2):7:1–7:35, 2008.

[35] W. Yang, M. Prasad, and T. Xie. A grey-box approach for automated
GUI-model generation of mobile applications. In FASE, 2013.

[36] X. Yuan, M. B. Cohen, and A. M. Memon. GUI interaction testing:
Incorporating event context. TSE, 37(4):559–574, 2011.

[37] X. Yuan and A. M. Memon. Using GUI run-time state as feedback to
generate test cases. In ICSE, pages 396–405, 2007.

[38] X. Yuan and A. M. Memon. Generating event sequence-based test cases
using GUI run-time state feedback. TSE, 36(1):81–95, 2010.

[39] P. Zhang and S. Elbaum. Amplifying tests to validate exception handling
code. In ICSE, pages 595–605, 2012.

