
BPGen: An Automated Breakpoint Generator
for Debugging

Cheng Zhang1, Dacong Yan2, Jianjun Zhao1,3, Yuting Chen3, Shengqian Yang3

1Department of Computer Science and Engineering, Shanghai Jiao Tong University
2Department of Computer Science and Engineering, The Ohio State University

3School of Software, Shanghai Jiao Tong University
cheng.zhang.stap@sjtu.edu.cn, yan@cse.ohio-state.edu, zhao-jj@cs.sjtu.edu.cn,

chenyt@cs.sjtu.edu.cn, michyang@sjtu.edu.cn

ABSTRACT
During debugging processes, breakpoints are frequently used
to inspect and understand runtime behaviors of programs.
Although most development environments offer convenient
breakpoint facilities, the use of these environments usually
requires considerable human efforts in order to generate use-
ful breakpoints. Before setting breakpoints or typing break-
point conditions, developers usually have to make some judge-
ments and hypotheses on the basis of their observations and
experience. To reduce this kind of efforts we present a tool,
named BPGen, to automatically generate breakpoints for
debugging. BPGen uses three well-known dynamic fault lo-
calization techniques in tandem to identify suspicious pro-
gram statements and states, through which both conditional
and unconditional breakpoints are generated. BPGen is im-
plemented as an Eclipse plugin for supplementing the exist-
ing Eclipse JDT debugger.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids

General Terms
Design, Reliability

Keywords
Debugging, Breakpoint

1. INTRODUCTION
Program debugging has long been a laborious task for soft-

ware developers. To reduce manual efforts for debugging,
a variety of automated debugging methods have been pro-
posed and tools have been developed both in academia and
in industry, and most of them focus on either detecting the
abnormal program execution flows [9, 14] or analyzing the
abnormal runtime program states [8, 18]. Nevertheless, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

use of these methods and tools in practice still faces strong
challenges. One main challenge is that the execution of the
program usually does not provide sufficient information to
precisely handle various kinds of bugs, some of which may be
extremely tricky. As a result it usually requires developers
to interactively explore the program executions and fix the
potential bugs. That is, developers still need to complete
several iterations of observation, making of hypotheses, and
verification of the hypotheses during debugging.

Most development environments provide necessary facili-
ties to aid program debugging. Among them, breakpoints
are frequently used in practice [13]. With breakpoints, de-
velopers can suspend the execution of a program and explore
its state space to find clues to bugs. However, during debug-
ging, the developers usually have to ask themselves a ques-
tion: where should the breakpoints be set? Some IDEs, such
as Eclipse[2], provide the functionality to export and import
breakpoints so that these breakpoints can be reused and be
shared among developers. Nevertheless, due to the diversity
of debugging tasks, setting of breakpoints still largely relies
on the developers’ capabilities of observations and judge-
ments on the debugging task in hand and even their experi-
ences of similar situations. Thus it is ordinary that a veteran
can set a small number of breakpoints and reveal a bug im-
mediately, whereas a novice may set a number of redundant
breakpoints, but still fail to find the bug. For this reason, a
set of well predefined breakpoints could be a quite pleasant
starting point for the developers to debug.

In this paper, we present a tool, named BPGen (Break-
Point Generator), which is used to automatically generate
breakpoints on the basis of a synergy of fault localization
methods. BPGen is implemented as an Eclipse plugin for
supplementing the existing Eclipse JDT debugger. The prin-
ciple of BPGen is at first to apply the nearest neighbor
queries method [14] to a failing test case, which is randomly
selected by the developer, in order to find suspicious basic
blocks in the program, and then to use dynamic program
slicing [11] to produce the corresponding program slice as
a supplement for the report of nearest neighbor queries so
that the root cause of the basic blocks’ suspiciousness can be
captured. BPGen generates breakpoints on the conditional
statements contained in the program slice. In the last step,
BPGen extracts memory graphs [20], compares the graphs
in order to identify the most suspicious program states, and
generates breakpoint conditions based on these states. The
main contributions of this work can be summarized as: 1)
a novel approach, which combines nearest neighbor queries

271

method, dynamic program slicing, and memory graph com-
parison, to breakpoint generation for aiding program de-
bugging and 2) a tool, called BPGen, which supports the
approach in Eclipse JDT debugger.
The rest of this paper is organized as follows. Section

2 describes the underlying approach of BPGen and its im-
plementation and usage. Section 3 compares BPGen with
related work. Section 4 concludes this paper and presents
the future work.

2. BPGEN: AN AUTOMATED BREAKPOINT
GENERATOR

2.1 Process of BPGen
BPGen contains two main activities when generating break-

points: 1) selecting breakpoint locations using nearest neigh-
bor queries method and dynamic program slicing, and 2)
generating a set of breakpoint conditions, each of which is a
boolean expression that will be evaluated at runtime.

2.1.1 Selecting Breakpoint Locations
In this work, we assume that a debugging task is to se-

lect one failing test case and make it pass by locating and
eliminating the corresponding bug. In addition, since line
breakpoints are much more frequently used than other kinds
of breakpoints (e.g., exception breakpoints, method entry
breakpoints and watchpoints) [3], we only focus on generat-
ing line breakpoints and their conditions.
In order to select breakpoint locations, we first randomly

select a failing test case, and then use the nearest neighbor
queries method [14] to find the passing test case nearest to
the selected failing test case and also identify the differences
between their execution traces. The nearest passing test
case is the one whose execution trace most resembles that
of the failing test case. The reason for us to focus on the
nearest passing test case is that when the execution traces
of both failing and passing test cases are similar (but not
identical), the differences between the traces are more likely
to indicate the bug of interest. On the contrary, if the two
execution traces are significantly different, it is not easy to
locate the bug by comparing them.
To perform nearest neighbor queries, we collect execution

traces by instrumenting the program and then running its
accompanying test cases. Execution traces are converted to
binary coverage spectra where the number of execution times
of a basic block is mapped to 1 or 0 to indicate whether the
basic block is executed or not. Then asymmetric Hamming
distance is used to compute the distances between execution
traces and determine the nearest passing test case. Finally
the differences are presented in the form of basic blocks, in
which the statements provide some candidate locations for
setting breakpoints in terms of the failing test case.
However, setting breakpoints only on the statements in

these basic blocks may not help to reveal the real bug, be-
cause the execution of the faulty statement may be much
earlier than the exhibition of the abnormal execution flow.
For this reason, BPGen uses backward dynamic program
slicing [11] to trace back to the statements where the pro-
gram state initially becomes incorrect. We add all the state-
ments reported by the nearest neighbor queries method and
the referenced variables to the slicing criterion set, and re-
run the failing test case in order to perform the backward
dynamic program slicing. Finally BPGen generates break-
points on the conditional statements in the resultant slice,

as these statements are usually relevant to the divergence of
execution flow or even the bug.

2.1.2 Generating Breakpoint Conditions
In most debuggers, a breakpoint can hold a condition

which is a boolean expression and will be evaluated when
the breakpoint is hit. The typical usage of a breakpoint
condition is to suspend the execution of program on the
breakpoint hit if its condition is evaluated to true. Thus a
breakpoint holding a proper condition can suspend the ex-
ecution of program just before or after the program enters
an incorrect state. It is especially useful when a breakpoint
is hit for a number of times, but only some of the hits are
worth focusing on.

BPGen adapts the memory graph comparison [20] to syn-
thesize conditions for breakpoints. Memory graphs can rep-
resent runtime program states exhaustively in a structural
way, and thus the results of memory graph comparisons are
usually precise for indicating incorrect states and convenient
for generating breakpoint conditions. Unfortunately, mem-
ory graph comparison requires the extraction of memory
graphs which usually causes heavy performance overhead
when the program states are huge in number and complex
in structure. Therefore, it is prohibitively expensive to per-
form a memory graph comparison at every breakpoint hit
and a better strategy is necessary.

Given a set of breakpoints BP = {bp1, bp2, ..., bpN} and a
specific breakpoint bpi ∈ BP , BPGen collects the runtime
values of the corresponding condition expression1 during the
executions of the failing test case and the nearest passing
test case. We use V p

i = (vpi,1, v
p
i,2, v

p
i,3, ..., v

p
i,m) and V f

i =

(vfi,1, v
f
i,2, v

f
i,3, ..., v

f
i,n) to note the two sequences of values,

where vpi,k (or vfi,k) stands for the value collected on the kth
hit of bpi during the passing (or failing) execution. Then we
define the set of comparison points CPi for bpi:

CPi =

{cpi,j |j = min({k|vfi,k = true, vpi,k = false})}
∪

{cpi,j |j = max({k|vfi,k = true, vpi,k = false})},
if vpi,k, v

f
i,k ∈ {true, false};

{cpi,j |j = min({k|vfi,k ̸= vpi,k})}
∪

{cpi,j |j = max({k|vfi,k ̸= vpi,k})}, otherwise

where 0 < k ≤ min(m,n), max and min compute the max-
imum and minimum values of k, respectively. Since condi-
tional statements include if, for, while, and switch, their
condition expressions may have boolean values or values of
other types (e.g., integer and enumeration types), which cor-
responds to the two cases in the definition of CPi. Then
CPi contains, for the breakpoint location of bpi, the first
and last times (if they exist) when the execution flow of
the failing test case diverges from that of the passing test
case. Note that we do not consider all the divergent points
for efficiency. Based on the definition of comparison points,
we provide the following strategy to perform memory graph
comparisons and to generate breakpoint conditions.

For each comparison point cpi,j ∈ CPi, BPGen extracts

two memory graphs Gf
i,j and Gp

i,j when the breakpoint bpi is
hit for the jth time during the failing and passing executions,
respectively. Then BPGen compares the two graphs using

1Every breakpoint is located at a conditional statement
which can be executed for several times during a single ex-
ecution.

272

the algorithm in [20] to find out their differences. Based
on the graph differences, BPGen composes the breakpoint
condition that is a conjunction of boolean expressions in the
form of a == b, obj1.equals(obj2), or a.length == len.
On the other hand, some breakpoints do not have cor-

responding comparison points, because the collected values
do not satisfy the conditions in the definition of compari-
son points. In this case no breakpoint conditions will be
generated for them. In terms of a rule in BPGen, condi-
tional breakpoints are enabled by default and unconditional
breakpoints are disabled. That is, when conditional break-
points are hit, their conditions will always be evaluated and
the execution may be suspended accordingly, while uncondi-
tional breakpoints will never come into effect until the user
enables them. We enforce this discrimination in order to 1)
distinguish the breakpoints that are able to reveal suspicious
program states and 2) reduce the number of breakpoints the
user has to inspect during the first iteration of debugging.

2.2 Implementation and Usage

Figure 1: Architecture of BPGen

Implementation. BPGen is implemented as an Eclipse
plugin whose architecture is shown in Figure 1. BPGen uses
InsECTJ [15] to instrument the program and collect the
execution traces. NN4J, an implementation of the nearest
neighbor queries method, is used to perform nearest neigh-
bor queries. BPGen uses JSlice [17] to compute dynamic
program slices. The Java parser and debug platform pro-
vided in Eclipse JDT are used to generate breakpoints and
their conditions. To record runtime value sequences, BPGen
uses Soot framework [4] to slightly instrument the program
at each breakpoint location. The memory graph component
of the DDstate plugin [1] is used to implement a breakpoint

Figure 2: BPGen launch configuration

listener. Once the listener is registered to the debug model,
memory graphs will be extracted and compared when re-
lated comparison points are reached.
Usage. To use the BPGen plugin, a developer only needs
to specify the failing test case and some passing test cases
in a customized GUI as shown in Figure 2. After the Run
button is pressed, BPGen starts to run in background.

As Figure 3 shows, the final output of BPGen is a group
of breakpoints which can be displayed both in the Break-
points view of the Debug perspective and in the Java editor
showing the corresponding Java source code. Figure 4 shows
the generated breakpoint condition in the Breakpoint Prop-
erties dialog of the conditional breakpoint of interest. After
running BPGen the developer can begin to debug the pro-
gram with these breakpoints in hand, which may save a lot
of debugging efforts.

Figure 3: Generated breakpoints in Breakpoints
view and Java editor

Figure 4: Generated breakpoint condition

3. RELATED WORK
Breakpoints are acknowledged as a powerful facility in

program debugging. Chern and Volder [5] design Control-
flow Breakpoint Debugger(CBD) which uses a pointcut lan-
guage to express control-flow conditions for breakpoints and
a menu-based GUI to help users specify the conditions. Be-
ing largely inspired by CBD, BPGen is orthogonal to CBD in
that it generates conditions in terms of program states while
CBD provides candidate conditions in terms of control-flow.

Zeller et al. develop the Delta Debugging techniques to
systematically analyze the differences in program inputs,
source codes, and program states to isolate failure-inducing
inputs, extract cause-effect chains, and link cause transitions
to program failures [19, 18, 6]. Compared with the Delta
Debugging techniques which are fully automated, BPGen

273

is primarily an aid to interactive debugging. Moreover, we
put emphasis on finding the locations to set breakpoints and
the opportunities to extract and compare memory graphs,
while Delta Debugging generally performs the searches in
space and time in a divide-and-conquer style. In BPGen,
we adopt the memory graph comparison from [20] and its
DDstate implementation. Although the DDstate implemen-
tation systematically changes the memory graph to isolate
relevant states, we just use it to compare the graphs and
analyze the graph differences to find accessible suspicious
states for generating breakpoint conditions.
Renieris and Reiss develop the nearest neighbor queries

method [14]. Based on the nearest neighbor queries method,
BPGen focuses on improving its usability in practice. Hao
et al. introduce a breakpoint-based interactive debugging
aid [7], which is similar to BPGen. However, BPGen com-
bines various fault localization techniques to automatically
generate breakpoints instead of using visualization to rec-
ommend breakpoint locations. Moreover, BPGen generates
conditions for breakpoints to strengthen their usability.
Program slicing is a powerful assistance to program debug-

ging [16]. While slices are static positions in programs, we
append dynamic information by attaching conditions to the
generated breakpoints. By combining dynamic and static
program slicing, Ko and Myers develop a tool called Why-
line[10] for interrogative debugging. Using Whyline a devel-
oper can easily query both dynamic and static dependen-
cies in program elements and execution events. Compared
with Whyline, BPGen is more of an enhancement to the
breakpoint utility than a reinvented debugging approach,
and the breakpoints generated by BPGen may be more fa-
miliar and acceptable to the developers. By recording every
state change at runtime, omniscient debugger [12] enables
the developers to debug backwards in time. Similar to Why-
line, omniscient debugger greatly enhances the developers’
ability to query runtime events in either direction along the
time line. In contrast, BPGen aims to indicate which vari-
ables should be inspected at which statements.

4. CONCLUSION AND FUTURE WORK
In this paper, we have presented BPGen, a tool which is

used to automatically generate breakpoints. BPGen adopts
three well-known dynamic fault localization techniques, in-
cluding nearest neighbor queries method, dynamic program
slicing, and memory graph comparison, to generate both
conditional and unconditional breakpoints. In the future,
we will adopt more powerful strategies (e.g., using the cause-
effect relations [18]) to generate breakpoints more effectively.
We also plan to improve the usability of BPGen.

5. ACKNOWLEDGMENTS
We are grateful to Hao Xu and Fangyue Wang for pro-

gramming assistance and to Karsten Lehmanm for his in-
structions on the usage of DDstate plugin. This work was
supported in part by National High Technology Develop-
ment Program of China (Grant No. 2006AA01Z158), Na-
tional Natural Science Foundation of China (NSFC) (Grants
No.60673120 and No. 60970009).

6. REFERENCES
[1] DDstate: Failure-Inducing States.

http://www.st.cs.uni-saarland.de/eclipse/.

[2] Eclipse project. http://www.eclipse.org/.

[3] Results from NetBeans Debugger Survey.
http://debugger.netbeans.org/survey.html.

[4] Soot: a java optimization framework.
http://www.sable.mcgill.ca/soot/.

[5] R. Chern and K. De Volder. Debugging with
control-flow breakpoints. In Proceedings of the 6th
international conference on Aspect-oriented software
development, pages 96–106, 2007.

[6] H. Cleve and A. Zeller. Locating causes of program
failures. 27th International Conference on Software
Engineering, pages 342–351, 2005.

[7] D. Hao, L. Zhang, L. Zhang, J. Sun, and H. Mei.
Vida: Visual interactive debugging. 31st International
Conference on Software Engineering, pages 583–586,
2009.

[8] D. Jeffrey, N. Gupta, and R. Gupta. Fault localization
using value replacement. International Symposium on
Software Testing and Analysis, pages 167–178, 2008.

[9] J. A. Jones and M. J. Harrold. Empirical evaluation of
the tarantula automatic fault-localization technique.
20th IEEE/ACM International Conference on
Automated Software Engineering, pages 273–282, 2005.

[10] A. J. Ko and B. A. Myers. Debugging reinvented:
asking and answering why and why not questions
about program behavior. 30th International
Conference on Software Engineering, pages 301–310,
2008.

[11] B. Korel and J. W. Laski. Dynamic program slicing.
Inf. Process. Lett., 29(3):155–163, 1988.

[12] B. Lewis. Debugging backwards in time. International
Workshop on Automated Debugging, pages 225–235,
2003.

[13] G. C. Murphy, M. Kersten, and L. Findlater. How are
java software developers using the eclipse ide? IEEE
Software, 23(4):76–83, 2006.

[14] M. Renieris and S. P. Reiss. Fault localization with
nearest neighbor queries. 23rd IEEE/ACM
International Conference on Automated Software
Engineering, pages 30–39, 2003.

[15] A. Seesing and P. Orso. InsECTJ : a generic
instrumentation framework for collecting dynamic
information within eclipse. Proceedings of the 2005
OOPSLA workshop on Eclipse technology eXchange,
pages 45–49, 2005.

[16] F. Tip. A survey of program slicing techniques.
Technical report, Amsterdam, The Netherlands, The
Netherlands, 1994.

[17] T. Wang and A. Roychoudhury. Using compressed
bytecode traces for slicing java programs. 26th
International Conference on Software Engineering,
pages 512–521, 2004.

[18] A. Zeller. Isolating cause-effect chains from computer
programs. Proceedings of the Tenth ACM SIGSOFT
Symposium on Foundations of Software Engineering,
pages 1–10, 2002.

[19] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Trans. Software
Eng., 28(2):183–200, 2002.

[20] T. Zimmermann and A. Zeller. Visualizing memory
graphs. In Software Visualization, pages 191–204,
2001.

274

